These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


504 related items for PubMed ID: 23150595

  • 21. Correlation between protein conformations and water structure and thermodynamics at high pressure: A molecular dynamics study of the Bovine Pancreatic Trypsin Inhibitor (BPTI) protein.
    Roy UC, Bandyopadhyay P.
    J Chem Phys; 2023 Mar 07; 158(9):095102. PubMed ID: 36889972
    [Abstract] [Full Text] [Related]

  • 22. Develop and test a solvent accessible surface area-based model in conformational entropy calculations.
    Wang J, Hou T.
    J Chem Inf Model; 2012 May 25; 52(5):1199-212. PubMed ID: 22497310
    [Abstract] [Full Text] [Related]

  • 23. Defining the thermodynamics of protein/DNA complexes and their components using micro-calorimetry.
    Crane-Robinson C, Dragan AI, Read CM.
    Methods Mol Biol; 2009 May 25; 543():625-51. PubMed ID: 19378190
    [Abstract] [Full Text] [Related]

  • 24. Conformational stabilization of an engineered binding protein.
    Wahlberg E, Härd T.
    J Am Chem Soc; 2006 Jun 14; 128(23):7651-60. PubMed ID: 16756322
    [Abstract] [Full Text] [Related]

  • 25. Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design.
    Chodera JD, Mobley DL.
    Annu Rev Biophys; 2013 Jun 14; 42():121-42. PubMed ID: 23654303
    [Abstract] [Full Text] [Related]

  • 26. Will molecular dynamics simulations of proteins ever reach equilibrium?
    Genheden S, Ryde U.
    Phys Chem Chem Phys; 2012 Jun 28; 14(24):8662-77. PubMed ID: 22614001
    [Abstract] [Full Text] [Related]

  • 27. Thermodynamic analysis of binding of p-substituted benzamidines to trypsin.
    Talhout R, Engberts JB.
    Eur J Biochem; 2001 Mar 28; 268(6):1554-60. PubMed ID: 11248672
    [Abstract] [Full Text] [Related]

  • 28. Congeneric but still distinct: how closely related trypsin ligands exhibit different thermodynamic and structural properties.
    Brandt T, Holzmann N, Muley L, Khayat M, Wegscheid-Gerlach C, Baum B, Heine A, Hangauer D, Klebe G.
    J Mol Biol; 2011 Feb 04; 405(5):1170-87. PubMed ID: 21111747
    [Abstract] [Full Text] [Related]

  • 29. Modeling protein density of states: additive hydrophobic effects are insufficient for calorimetric two-state cooperativity.
    Chan HS.
    Proteins; 2000 Sep 01; 40(4):543-71. PubMed ID: 10899781
    [Abstract] [Full Text] [Related]

  • 30. Atomistic and Thermodynamic Analysis of N6-Methyladenosine (m6A) Recognition by the Reader Domain of YTHDC1.
    Li Y, Bedi RK, Wiedmer L, Sun X, Huang D, Caflisch A.
    J Chem Theory Comput; 2021 Feb 09; 17(2):1240-1249. PubMed ID: 33472367
    [Abstract] [Full Text] [Related]

  • 31. Thermodynamic studies of the interaction of alpha-chymotrypsin with water. II. Statistical analyses of the enthalpy-entropy compensation effect.
    Lüscher M, Rüegg M, Schindler P.
    Biochim Biophys Acta; 1978 Sep 26; 536(1):27-37. PubMed ID: 708766
    [Abstract] [Full Text] [Related]

  • 32. Thermodynamics of mRNA 5' cap binding by eukaryotic translation initiation factor eIF4E.
    Niedzwiecka A, Darzynkiewicz E, Stolarski R.
    Biochemistry; 2004 Oct 26; 43(42):13305-17. PubMed ID: 15491137
    [Abstract] [Full Text] [Related]

  • 33. Hydrophobic surface residues can stabilize a protein through improved water-protein interactions.
    Islam MM, Kobayashi K, Kidokoro SI, Kuroda Y.
    FEBS J; 2019 Oct 26; 286(20):4122-4134. PubMed ID: 31175706
    [Abstract] [Full Text] [Related]

  • 34. Crystal structures of highly simplified BPTIs provide insights into hydration-driven increase of unfolding enthalpy.
    Islam MM, Yohda M, Kidokoro SI, Kuroda Y.
    Sci Rep; 2017 Mar 07; 7():41205. PubMed ID: 28266637
    [Abstract] [Full Text] [Related]

  • 35. Enthalpy of helix-coil transition: missing link in rationalizing the thermodynamics of helix-forming propensities of the amino acid residues.
    Richardson JM, Lopez MM, Makhatadze GI.
    Proc Natl Acad Sci U S A; 2005 Feb 01; 102(5):1413-8. PubMed ID: 15671166
    [Abstract] [Full Text] [Related]

  • 36. Interplay between Conformational Entropy and Solvation Entropy in Protein-Ligand Binding.
    Verteramo ML, Stenström O, Ignjatović MM, Caldararu O, Olsson MA, Manzoni F, Leffler H, Oksanen E, Logan DT, Nilsson UJ, Ryde U, Akke M.
    J Am Chem Soc; 2019 Feb 06; 141(5):2012-2026. PubMed ID: 30618244
    [Abstract] [Full Text] [Related]

  • 37. Empirical solvation models in the context of conformational energy searches: application to bovine pancreatic trypsin inhibitor.
    Williams RL, Vila J, Perrot G, Scheraga HA.
    Proteins; 1992 Sep 06; 14(1):110-9. PubMed ID: 1384032
    [Abstract] [Full Text] [Related]

  • 38. Water networks contribute to enthalpy/entropy compensation in protein-ligand binding.
    Breiten B, Lockett MR, Sherman W, Fujita S, Al-Sayah M, Lange H, Bowers CM, Heroux A, Krilov G, Whitesides GM.
    J Am Chem Soc; 2013 Oct 16; 135(41):15579-84. PubMed ID: 24044696
    [Abstract] [Full Text] [Related]

  • 39. Thermodynamic criterion for the conformation of P1 residues of substrates and of inhibitors in complexes with serine proteinases.
    Qasim MA, Lu SM, Ding J, Bateman KS, James MN, Anderson S, Song J, Markley JL, Ganz PJ, Saunders CW, Laskowski M.
    Biochemistry; 1999 Jun 01; 38(22):7142-50. PubMed ID: 10353824
    [Abstract] [Full Text] [Related]

  • 40. Interaction of explicit solvent with hydrophobic/philic/charged residues of a protein: residue character vs. conformational context.
    Martorana V, Corongiu G, Palma MU.
    Proteins; 1998 Aug 01; 32(2):129-35. PubMed ID: 9714154
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 26.