These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Evaluation of the simultaneous effects of processing parameters on the iron and zinc solubility of infant sorghum porridge by response surface methodology. Kayodé AP, Nout MJ, Bakker EJ, Van Boekel MA. J Agric Food Chem; 2006 Jun 14; 54(12):4253-9. PubMed ID: 16756354 [Abstract] [Full Text] [Related]
45. Degradation of phytate by high-phytase Saccharomyces cerevisiae strains during simulated gastrointestinal digestion. Haraldsson AK, Veide J, Andlid T, Alminger ML, Sandberg AS. J Agric Food Chem; 2005 Jun 29; 53(13):5438-44. PubMed ID: 15969530 [Abstract] [Full Text] [Related]
46. Effects of phytate and minerals on the bioavailability of oxalate from food. Israr B, Frazier RA, Gordon MH. Food Chem; 2013 Dec 01; 141(3):1690-3. PubMed ID: 23870879 [Abstract] [Full Text] [Related]
48. Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Schlemmer U, Frølich W, Prieto RM, Grases F. Mol Nutr Food Res; 2009 Sep 01; 53 Suppl 2():S330-75. PubMed ID: 19774556 [Abstract] [Full Text] [Related]
49. In vitro solubility of calcium, iron, and zinc in rice bran treated with phytase, cellulase, and protease. Wang Y, Cheng Y, Ou K, Lin L, Liang J. J Agric Food Chem; 2008 Dec 24; 56(24):11868-74. PubMed ID: 19053222 [Abstract] [Full Text] [Related]
53. β-propeller phytase hydrolyzes insoluble Ca(2+)-phytate salts and completely abrogates the ability of phytate to chelate metal ions. Kim OH, Kim YO, Shim JH, Jung YS, Jung WJ, Choi WC, Lee H, Lee SJ, Kim KK, Auh JH, Kim H, Kim JW, Oh TK, Oh BC. Biochemistry; 2010 Nov 30; 49(47):10216-27. PubMed ID: 20964370 [Abstract] [Full Text] [Related]
54. Pathway of phytate dephosphorylation by beta-propeller phytases of different origins. Greiner R, Lim BL, Cheng C, Carlsson NG. Can J Microbiol; 2007 Apr 30; 53(4):488-95. PubMed ID: 17612603 [Abstract] [Full Text] [Related]
56. Transgenic microalgae expressing Escherichia coli AppA phytase as feed additive to reduce phytate excretion in the manure of young broiler chicks. Yoon SM, Kim SY, Li KF, Yoon BH, Choe S, Kuo MM. Appl Microbiol Biotechnol; 2011 Aug 30; 91(3):553-63. PubMed ID: 21533578 [Abstract] [Full Text] [Related]
57. Methodological aspects of measuring phytase activity and phytate phosphorus content in selected cereal grains and digesta and feces of pigs. Shen Y, Yin Y, Chavez ER, Fan MZ. J Agric Food Chem; 2005 Feb 23; 53(4):853-9. PubMed ID: 15712989 [Abstract] [Full Text] [Related]
59. Fluorometric detection of inositol phosphates and the activity of their enzymes with synthetic pores: discrimination of IP7 and IP6 and phytate sensing in complex matrices. Butterfield SM, Tran DH, Zhang H, Prestwich GD, Matile S. J Am Chem Soc; 2008 Mar 19; 130(11):3270-1. PubMed ID: 18302378 [No Abstract] [Full Text] [Related]
60. Phytate: impact on environment and human nutrition. A challenge for molecular breeding. Bohn L, Meyer AS, Rasmussen SK. J Zhejiang Univ Sci B; 2008 Mar 19; 9(3):165-91. PubMed ID: 18357620 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]