These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


396 related items for PubMed ID: 23151811

  • 21. Conformational coupling between the cytoplasmic carboxylic acid and the retinal in a fungal light-driven proton pump.
    Furutani Y, Sumii M, Fan Y, Shi L, Waschuk SA, Brown LS, Kandori H.
    Biochemistry; 2006 Dec 26; 45(51):15349-58. PubMed ID: 17176057
    [Abstract] [Full Text] [Related]

  • 22. Thermal and spectroscopic characterization of a proton pumping rhodopsin from an extreme thermophile.
    Tsukamoto T, Inoue K, Kandori H, Sudo Y.
    J Biol Chem; 2013 Jul 26; 288(30):21581-92. PubMed ID: 23740255
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Characterization of an Unconventional Rhodopsin from the Freshwater Actinobacterium Rhodoluna lacicola.
    Keffer JL, Hahn MW, Maresca JA.
    J Bacteriol; 2015 Aug 26; 197(16):2704-12. PubMed ID: 26055118
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Actinorhodopsins: proteorhodopsin-like gene sequences found predominantly in non-marine environments.
    Sharma AK, Zhaxybayeva O, Papke RT, Doolittle WF.
    Environ Microbiol; 2008 Apr 26; 10(4):1039-56. PubMed ID: 18218036
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. pH-dependent photoisomerization of retinal in proteorhodopsin.
    Huber R, Köhler T, Lenz MO, Bamberg E, Kalmbach R, Engelhard M, Wachtveitl J.
    Biochemistry; 2005 Feb 15; 44(6):1800-6. PubMed ID: 15697205
    [Abstract] [Full Text] [Related]

  • 29. Substitution of Pro206 and Ser86 residues in the retinal binding pocket of Anabaena sensory rhodopsin is not sufficient for proton pumping function.
    Choi AR, Kim SY, Yoon SR, Bae K, Jung KH.
    J Microbiol Biotechnol; 2007 Jan 15; 17(1):138-45. PubMed ID: 18051365
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Structural divergence and functional versatility of the rhodopsin superfamily.
    Kouyama T, Murakami M.
    Photochem Photobiol Sci; 2010 Nov 15; 9(11):1458-65. PubMed ID: 20931138
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Detection of fast light-activated H+ release and M intermediate formation from proteorhodopsin.
    Krebs RA, Alexiev U, Partha R, DeVita AM, Braiman MS.
    BMC Physiol; 2002 Apr 09; 2():5. PubMed ID: 11943070
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Proteorhodopsin Activation Is Modulated by Dynamic Changes in Internal Hydration.
    Feng J, Mertz B.
    Biochemistry; 2015 Dec 08; 54(48):7132-41. PubMed ID: 26562497
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Importance of alanine at position 178 in proteorhodopsin for absorption of prevalent ambient light in the marine environment.
    Yamada K, Kawanabe A, Kandori H.
    Biochemistry; 2010 Mar 23; 49(11):2416-23. PubMed ID: 20170125
    [Abstract] [Full Text] [Related]

  • 38. Proteorhodopsin Overproduction Enhances the Long-Term Viability of Escherichia coli.
    Song Y, Cartron ML, Jackson PJ, Davison PA, Dickman MJ, Zhu D, Huang WE, Hunter CN.
    Appl Environ Microbiol; 2019 Dec 13; 86(1):. PubMed ID: 31653788
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 20.