These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


272 related items for PubMed ID: 23154752

  • 1. Fluorescence enhancement from nano-gap embedded plasmonic gratings by a novel fabrication technique with HD-DVD.
    Bhatnagar K, Pathak A, Menke D, Cornish PV, Gangopadhyay K, Korampally V, Gangopadhyay S.
    Nanotechnology; 2012 Dec 14; 23(49):495201. PubMed ID: 23154752
    [Abstract] [Full Text] [Related]

  • 2. High-Q/Veff gap-mode plasmonic FP nanocavity.
    Jiang H, Liu C, Wang P, Zhang D, Lu Y, Ming H.
    Opt Express; 2013 Feb 25; 21(4):4752-7. PubMed ID: 23482008
    [Abstract] [Full Text] [Related]

  • 3. Nanoplasmonics of prime number arrays.
    Forestiere C, Walsh GF, Miano G, Dal Negro L.
    Opt Express; 2009 Dec 21; 17(26):24288-303. PubMed ID: 20052140
    [Abstract] [Full Text] [Related]

  • 4. Focusing plasmons in nanoslits for surface-enhanced Raman scattering.
    Chen C, Hutchison JA, Van Dorpe P, Kox R, De Vlaminck I, Uji-I H, Hofkens J, Lagae L, Maes G, Borghs G.
    Small; 2009 Dec 21; 5(24):2876-82. PubMed ID: 19816878
    [Abstract] [Full Text] [Related]

  • 5. Surface plasmons on zig-zag gratings.
    Constant TJ, Taphouse TS, Rance HJ, Kitson SC, Hibbins AP, Sambles JR.
    Opt Express; 2012 Oct 08; 20(21):23921-6. PubMed ID: 23188358
    [Abstract] [Full Text] [Related]

  • 6. Investigation of subwavelength grating structure for enhanced surface plasmon resonance detection.
    Tahmasebpour M, Bahrami M, Asgari A.
    Appl Opt; 2014 Sep 20; 53(27):6307-16. PubMed ID: 25322112
    [Abstract] [Full Text] [Related]

  • 7. Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation.
    Wang D, Yang T, Crozier KB.
    Opt Express; 2011 Jan 31; 19(3):2148-57. PubMed ID: 21369032
    [Abstract] [Full Text] [Related]

  • 8. Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles.
    Min Q, Pang Y, Collins DJ, Kuklev NA, Gottselig K, Steuerman DW, Gordon R.
    Opt Express; 2011 Jan 17; 19(2):1648-55. PubMed ID: 21263704
    [Abstract] [Full Text] [Related]

  • 9. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U, Turan R.
    Opt Express; 2010 Aug 02; 18(16):17322-38. PubMed ID: 20721120
    [Abstract] [Full Text] [Related]

  • 10. Surface plasmon-coupled emission on plasmonic Bragg gratings.
    Toma M, Toma K, Adam P, Homola J, Knoll W, Dostálek J.
    Opt Express; 2012 Jun 18; 20(13):14042-53. PubMed ID: 22714469
    [Abstract] [Full Text] [Related]

  • 11. Electromagnetic energy vortex associated with sub-wavelength plasmonic Taiji marks.
    Chen WT, Wu PC, Chen CJ, Chung HY, Chau YF, Kuan CH, Tsai DP.
    Opt Express; 2010 Sep 13; 18(19):19665-71. PubMed ID: 20940861
    [Abstract] [Full Text] [Related]

  • 12. Efficient low dispersion compact plasmonic-photonic coupler.
    Sidiropoulos TP, Maier SA, Oulton RF.
    Opt Express; 2012 May 21; 20(11):12359-65. PubMed ID: 22714223
    [Abstract] [Full Text] [Related]

  • 13. Enhanced transmission of electromagnetic waves through 1D plasmonic crystals.
    So JK, Jung HC, Min SH, Jang KH, Bak SH, Park GS.
    Opt Express; 2010 Sep 13; 18(19):20222-8. PubMed ID: 20940913
    [Abstract] [Full Text] [Related]

  • 14. Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance.
    Cinel NA, Bütün S, Özbay E.
    Opt Express; 2012 Jan 30; 20(3):2587-97. PubMed ID: 22330497
    [Abstract] [Full Text] [Related]

  • 15. Modulation of evanescent focus by localized surface plasmons waveguide.
    Gao X, Gan X.
    Opt Express; 2009 Dec 07; 17(25):22726-34. PubMed ID: 20052198
    [Abstract] [Full Text] [Related]

  • 16. Imprinting localized plasmons for enhanced solar cells.
    Dunbar RB, Pfadler T, Lal NN, Baumberg JJ, Schmidt-Mende L.
    Nanotechnology; 2012 Sep 28; 23(38):385202. PubMed ID: 22948008
    [Abstract] [Full Text] [Related]

  • 17. Optical absorption enhancement of hybrid-plasmonic-based metal-semiconductor-metal photodetector incorporating metal nanogratings and embedded metal nanoparticles.
    Tan CL, Karar A, Alameh K, Lee YT.
    Opt Express; 2013 Jan 28; 21(2):1713-25. PubMed ID: 23389156
    [Abstract] [Full Text] [Related]

  • 18. Plasmonic metal-dielectric-metal stack structure with subwavelength metallic gratings for improving sensor sensitivity and signal quality.
    El-Gohary SH, Choi JM, Kim NH, Byun KM.
    Appl Opt; 2014 Apr 01; 53(10):2152-7. PubMed ID: 24787174
    [Abstract] [Full Text] [Related]

  • 19. Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing.
    Trevino J, Walsh GF, Pecora EF, Boriskina SV, Dal Negro L.
    Opt Lett; 2013 Nov 15; 38(22):4861-3. PubMed ID: 24322151
    [Abstract] [Full Text] [Related]

  • 20. Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap.
    Avrutsky I, Soref R, Buchwald W.
    Opt Express; 2010 Jan 04; 18(1):348-63. PubMed ID: 20173855
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.