These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


219 related items for PubMed ID: 23162699

  • 21. Prey-mediated effects of transgenic canola on a beneficial, non-target, carabid beetle.
    Ferry N, Mulligan EA, Stewart CN, Tabashnik BE, Port GR, Gatehouse AM.
    Transgenic Res; 2006 Aug; 15(4):501-14. PubMed ID: 16906450
    [Abstract] [Full Text] [Related]

  • 22. Applying an integrated refuge to manage western corn rootworm (Coleoptera: Chrysomelidae): effects on survival, fitness, and selection pressure.
    Petzold-Maxwell JL, Alves AP, Estes RE, Gray ME, Meinke LJ, Shields EJ, Thompson SD, Tinsley NA, Gassmann AJ.
    J Econ Entomol; 2013 Oct; 106(5):2195-207. PubMed ID: 24224265
    [Abstract] [Full Text] [Related]

  • 23. CRISPR-Mediated Knockout of the ABCC2 Gene in Ostrinia furnacalis Confers High-Level Resistance to the Bacillus thuringiensis Cry1Fa Toxin.
    Wang X, Xu Y, Huang J, Jin W, Yang Y, Wu Y.
    Toxins (Basel); 2020 Apr 11; 12(4):. PubMed ID: 32290427
    [Abstract] [Full Text] [Related]

  • 24. Contamination of refuges by Bacillus thuringiensis toxin genes from transgenic maize.
    Chilcutt CF, Tabashnik BE.
    Proc Natl Acad Sci U S A; 2004 May 18; 101(20):7526-9. PubMed ID: 15136739
    [Abstract] [Full Text] [Related]

  • 25. Vip3A resistance alleles exist at high levels in Australian targets before release of cotton expressing this toxin.
    Mahon RJ, Downes SJ, James B.
    PLoS One; 2012 May 18; 7(6):e39192. PubMed ID: 22761737
    [Abstract] [Full Text] [Related]

  • 26. Early detection of field-evolved resistance to Bt cotton in China: cotton bollworm and pink bollworm.
    Tabashnik BE, Wu K, Wu Y.
    J Invertebr Pathol; 2012 Jul 18; 110(3):301-6. PubMed ID: 22537835
    [Abstract] [Full Text] [Related]

  • 27. Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance.
    Tabashnik BE, Huang F, Ghimire MN, Leonard BR, Siegfried BD, Rangasamy M, Yang Y, Wu Y, Gahan LJ, Heckel DG, Bravo A, Soberón M.
    Nat Biotechnol; 2011 Oct 09; 29(12):1128-31. PubMed ID: 21983521
    [Abstract] [Full Text] [Related]

  • 28. Mechanisms of Resistance to Insecticidal Proteins from Bacillus thuringiensis.
    Jurat-Fuentes JL, Heckel DG, Ferré J.
    Annu Rev Entomol; 2021 Jan 07; 66():121-140. PubMed ID: 33417820
    [Abstract] [Full Text] [Related]

  • 29. Demographic Performance of Helicoverpa zea Populations on Dual and Triple-Gene Bt Cotton.
    Rabelo MM, Paula-Moraes SV, Pereira EJG, Siegfried BD.
    Toxins (Basel); 2020 Aug 28; 12(9):. PubMed ID: 32872277
    [Abstract] [Full Text] [Related]

  • 30. Effects of refuges on the evolution of resistance to transgenic corn by the western corn rootworm, Diabrotica virgifera virgifera LeConte.
    Deitloff J, Dunbar MW, Ingber DA, Hibbard BE, Gassmann AJ.
    Pest Manag Sci; 2016 Jan 28; 72(1):190-8. PubMed ID: 25652190
    [Abstract] [Full Text] [Related]

  • 31. Delaying corn rootworm resistance to Bt corn.
    Tabashnik BE, Gould F.
    J Econ Entomol; 2012 Jun 28; 105(3):767-76. PubMed ID: 22812111
    [Abstract] [Full Text] [Related]

  • 32. Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy.
    Kumar S, Chandra A, Pandey KC.
    J Environ Biol; 2008 Sep 28; 29(5):641-53. PubMed ID: 19295059
    [Abstract] [Full Text] [Related]

  • 33. Estimating the frequency of Cry1F resistance in field populations of the European corn borer (Lepidoptera: Crambidae).
    Siegfried BD, Rangasamy M, Wang H, Spencer T, Haridas CV, Tenhumberg B, Sumerford DV, Storer NP.
    Pest Manag Sci; 2014 May 28; 70(5):725-33. PubMed ID: 24124030
    [Abstract] [Full Text] [Related]

  • 34. Insect resistance to Bt crops: lessons from the first billion acres.
    Tabashnik BE, Brévault T, Carrière Y.
    Nat Biotechnol; 2013 Jun 28; 31(6):510-21. PubMed ID: 23752438
    [Abstract] [Full Text] [Related]

  • 35. The compatibility of a nucleopolyhedrosis virus control with resistance management for Bacillus thuringiensis: co-infection and cross-resistance studies with the diamondback moth, Plutella xylostella.
    Raymond B, Sayyed AH, Wright DJ.
    J Invertebr Pathol; 2006 Oct 28; 93(2):114-20. PubMed ID: 16905146
    [Abstract] [Full Text] [Related]

  • 36. Downregulation of a transcription factor associated with resistance to Bt toxin Vip3Aa in the invasive fall armyworm.
    Jin M, Shan Y, Peng Y, Wang W, Zhang H, Liu K, Heckel DG, Wu K, Tabashnik BE, Xiao Y.
    Proc Natl Acad Sci U S A; 2023 Oct 31; 120(44):e2306932120. PubMed ID: 37874855
    [Abstract] [Full Text] [Related]

  • 37. Transgenic Drosophila to Functionally Validate Fall Armyworm ABCC2 Mutations Conferring Bt Resistance.
    Panteleri R, Anthousi A, Denecke S, Boaventura D, Nauen R, Vontas J.
    Toxins (Basel); 2023 Jun 07; 15(6):. PubMed ID: 37368687
    [Abstract] [Full Text] [Related]

  • 38. Field-evolved resistance to Bt maize by western corn rootworm: predictions from the laboratory and effects in the field.
    Gassmann AJ.
    J Invertebr Pathol; 2012 Jul 07; 110(3):287-93. PubMed ID: 22537837
    [Abstract] [Full Text] [Related]

  • 39. Dominance and fitness costs of insect resistance to genetically modified Bacillus thuringiensis crops.
    Huang F.
    GM Crops Food; 2021 Jan 02; 12(1):192-211. PubMed ID: 33380258
    [Abstract] [Full Text] [Related]

  • 40. An agent-based model of insect resistance management and mitigation for Bt maize: a social science perspective.
    Saikai Y, Hurley TM, Mitchell PD.
    Pest Manag Sci; 2021 Jan 02; 77(1):273-284. PubMed ID: 32696499
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.