These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


368 related items for PubMed ID: 23164218

  • 21. Impact of the physiological state of fungal spores on their inactivation by active chlorine and hydrogen peroxide.
    Visconti V, Rigalma K, Coton E, Dantigny P.
    Food Microbiol; 2021 Dec; 100():103850. PubMed ID: 34416954
    [Abstract] [Full Text] [Related]

  • 22. Recent advances in drinking water disinfection: successes and challenges.
    Ngwenya N, Ncube EJ, Parsons J.
    Rev Environ Contam Toxicol; 2013 Dec; 222():111-70. PubMed ID: 22990947
    [Abstract] [Full Text] [Related]

  • 23. Bromine and Chlorine Disinfection of Cryptosporidium parvum Oocysts, Bacillus atrophaeus Spores, and MS2 Coliphage in Water.
    Coleman CK, Kim J, Bailey ES, Abebe LS, Brown J, Simmons OD, Sobsey MD.
    Environ Sci Technol; 2023 Nov 28; 57(47):18744-18753. PubMed ID: 37220325
    [Abstract] [Full Text] [Related]

  • 24. Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water.
    Khan S, Beattie TK, Knapp CW.
    Chemosphere; 2016 Jun 28; 152():132-41. PubMed ID: 26966812
    [Abstract] [Full Text] [Related]

  • 25. A new approach to testing the efficacy of drinking water disinfectants.
    Grunert A, Frohnert A, Selinka HC, Szewzyk R.
    Int J Hyg Environ Health; 2018 Sep 28; 221(8):1124-1132. PubMed ID: 30098909
    [Abstract] [Full Text] [Related]

  • 26. Development of a Ct equation taking into consideration the effect of lot variability on the inactivation of Cryptosporidium parvum oocysts with ozone.
    Sivaganesan M, Mariñas BJ.
    Water Res; 2005 Jun 28; 39(11):2429-37. PubMed ID: 15963550
    [Abstract] [Full Text] [Related]

  • 27. The effect of cyanuric acid on the disinfection rate of Cryptosporidium parvum in 20-ppm free chlorine.
    Shields JM, Arrowood MJ, Hill VR, Beach MJ.
    J Water Health; 2009 Mar 28; 7(1):109-14. PubMed ID: 18957779
    [Abstract] [Full Text] [Related]

  • 28. Theoretical considerations and modeling of chemical inactivation of microorganisms: inactivation of Giardia Cysts by free chlorine.
    Fernando WJ.
    J Theor Biol; 2009 Jul 21; 259(2):297-303. PubMed ID: 19336237
    [Abstract] [Full Text] [Related]

  • 29. Effects of source water quality on chlorine inactivation of adenovirus, coxsackievirus, echovirus, and murine norovirus.
    Kahler AM, Cromeans TL, Roberts JM, Hill VR.
    Appl Environ Microbiol; 2010 Aug 21; 76(15):5159-64. PubMed ID: 20562285
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants.
    Cho M, Kim JH, Yoon J.
    Water Res; 2006 Aug 21; 40(15):2911-20. PubMed ID: 16884760
    [Abstract] [Full Text] [Related]

  • 32. A field study evaluation for mitigating biofouling with chlorine dioxide or chlorine integrated with UV disinfection.
    Rand JL, Hofmann R, Alam MZ, Chauret C, Cantwell R, Andrews RC, Gagnon GA.
    Water Res; 2007 May 21; 41(9):1939-48. PubMed ID: 17383708
    [Abstract] [Full Text] [Related]

  • 33. Neural networks provide superior description of Giardia lamblia inactivation by free chlorine.
    Haas CN.
    Water Res; 2004 May 21; 38(14-15):3449-57. PubMed ID: 15276762
    [Abstract] [Full Text] [Related]

  • 34. Inactivation of adenoviruses, enteroviruses, and murine norovirus in water by free chlorine and monochloramine.
    Cromeans TL, Kahler AM, Hill VR.
    Appl Environ Microbiol; 2010 Feb 21; 76(4):1028-33. PubMed ID: 20023080
    [Abstract] [Full Text] [Related]

  • 35. Use of household bleach for emergency disinfection of drinking water.
    Elmaksoud SA, Patel N, Maxwell SL, Sifuentes LY, Gerba CP.
    J Environ Health; 2014 May 21; 76(9):22-5. PubMed ID: 24909009
    [Abstract] [Full Text] [Related]

  • 36. The use of chlorine dioxide for the inactivation of copepod zooplankton in drinking water treatment.
    Lin T, Chen W, Cai B.
    Environ Technol; 2014 May 21; 35(21-24):2846-51. PubMed ID: 25176489
    [Abstract] [Full Text] [Related]

  • 37. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection.
    Zyara AM, Torvinen E, Veijalainen AM, Heinonen-Tanski H.
    J Water Health; 2016 Aug 21; 14(4):640-9. PubMed ID: 27441859
    [Abstract] [Full Text] [Related]

  • 38. Inactivation of enteric microbes in water by electro-chemical oxidant from brine (NaCl) and free chlorine.
    Venczel LV, Likirdopulos CA, Robinson CE, Sobsey MD.
    Water Sci Technol; 2004 Aug 21; 50(1):141-6. PubMed ID: 15318500
    [Abstract] [Full Text] [Related]

  • 39. Inactivation of Cryptosporidium parvum under chlorinated recreational water conditions.
    Shields JM, Hill VR, Arrowood MJ, Beach MJ.
    J Water Health; 2008 Dec 21; 6(4):513-20. PubMed ID: 18401116
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 19.