These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


630 related items for PubMed ID: 23166109

  • 1. Novel naturally crosslinked electrospun nanofibrous chitosan mats for guided bone regeneration membranes: material characterization and cytocompatibility.
    Norowski PA, Fujiwara T, Clem WC, Adatrow PC, Eckstein EC, Haggard WO, Bumgardner JD.
    J Tissue Eng Regen Med; 2015 May; 9(5):577-83. PubMed ID: 23166109
    [Abstract] [Full Text] [Related]

  • 2. Suture pullout strength and in vitro fibroblast and RAW 264.7 monocyte biocompatibility of genipin crosslinked nanofibrous chitosan mats for guided tissue regeneration.
    Norowski PA, Mishra S, Adatrow PC, Haggard WO, Bumgardner JD.
    J Biomed Mater Res A; 2012 Nov; 100(11):2890-6. PubMed ID: 22696151
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application.
    Zhang K, Qian Y, Wang H, Fan L, Huang C, Yin A, Mo X.
    J Biomed Mater Res A; 2010 Dec 01; 95(3):870-81. PubMed ID: 20824649
    [Abstract] [Full Text] [Related]

  • 5. Guided bone regeneration with tripolyphosphate cross-linked asymmetric chitosan membrane.
    Ma S, Chen Z, Qiao F, Sun Y, Yang X, Deng X, Cen L, Cai Q, Wu M, Zhang X, Gao P.
    J Dent; 2014 Dec 01; 42(12):1603-12. PubMed ID: 25193523
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. New crosslinkers for electrospun chitosan fibre mats. Part II: mechanical properties.
    Donius AE, Kiechel MA, Schauer CL, Wegst UG.
    J R Soc Interface; 2013 Apr 06; 10(81):20120946. PubMed ID: 23349435
    [Abstract] [Full Text] [Related]

  • 9. In vitro and in vivo evaluations of a novel post-electrospinning treatment to improve the fibrous structure of chitosan membranes for guided bone regeneration.
    Su H, Liu KY, Karydis A, Abebe DG, Wu C, Anderson KM, Ghadri N, Adatrow P, Fujiwara T, Bumgardner JD.
    Biomed Mater; 2016 Dec 02; 12(1):015003. PubMed ID: 27910815
    [Abstract] [Full Text] [Related]

  • 10. New crosslinkers for electrospun chitosan fibre mats. I. Chemical analysis.
    Austero MS, Donius AE, Wegst UG, Schauer CL.
    J R Soc Interface; 2012 Oct 07; 9(75):2551-62. PubMed ID: 22628209
    [Abstract] [Full Text] [Related]

  • 11. Storage stability of electrospun pure gelatin stabilized with EDC/Sulfo-NHS.
    Ghassemi Z, Slaughter G.
    Biopolymers; 2018 Sep 07; 109(9):e23232. PubMed ID: 30191551
    [Abstract] [Full Text] [Related]

  • 12. Structure, morphology and properties of genipin-crosslinked carboxymethylchitosan porous membranes.
    Fiamingo A, Campana-Filho SP.
    Carbohydr Polym; 2016 Jun 05; 143():155-63. PubMed ID: 27083355
    [Abstract] [Full Text] [Related]

  • 13. Preparation, characterization, and evaluation of genipin crosslinked chitosan/gelatin three-dimensional scaffolds for liver tissue engineering applications.
    Zhang Y, Wang QS, Yan K, Qi Y, Wang GF, Cui YL.
    J Biomed Mater Res A; 2016 Aug 05; 104(8):1863-70. PubMed ID: 27027247
    [Abstract] [Full Text] [Related]

  • 14. Assessment of various crosslinking agents on collagen/chitosan scaffolds for myocardial tissue engineering.
    Fang Y, Zhang T, Song Y, Sun W.
    Biomed Mater; 2020 May 05; 15(4):045003. PubMed ID: 31530754
    [Abstract] [Full Text] [Related]

  • 15. A human-like collagen/chitosan electrospun nanofibrous scaffold from aqueous solution: electrospun mechanism and biocompatibility.
    Chen L, Zhu C, Fan D, Liu B, Ma X, Duan Z, Zhou Y.
    J Biomed Mater Res A; 2011 Dec 01; 99(3):395-409. PubMed ID: 22021187
    [Abstract] [Full Text] [Related]

  • 16. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold.
    Poursamar SA, Lehner AN, Azami M, Ebrahimi-Barough S, Samadikuchaksaraei A, Antunes AP.
    Mater Sci Eng C Mater Biol Appl; 2016 Jun 01; 63():1-9. PubMed ID: 27040189
    [Abstract] [Full Text] [Related]

  • 17. Chitosan membranes for tissue engineering: comparison of different crosslinkers.
    Ruini F, Tonda-Turo C, Chiono V, Ciardelli G.
    Biomed Mater; 2015 Nov 03; 10(6):065002. PubMed ID: 26526195
    [Abstract] [Full Text] [Related]

  • 18. Triethyl orthoformate mediated a novel crosslinking method for the preparation of hydrogels for tissue engineering applications: characterization and in vitro cytocompatibility analysis.
    Yar M, Shahzad S, Siddiqi SA, Mahmood N, Rauf A, Anwar MS, Chaudhry AA, Rehman Iu.
    Mater Sci Eng C Mater Biol Appl; 2015 Nov 01; 56():154-64. PubMed ID: 26249576
    [Abstract] [Full Text] [Related]

  • 19. Novel poss reinforced chitosan composite membranes for guided bone tissue regeneration.
    Tamburaci S, Tihminlioglu F.
    J Mater Sci Mater Med; 2017 Dec 01; 29(1):1. PubMed ID: 29196900
    [Abstract] [Full Text] [Related]

  • 20. Genipin-induced changes in collagen gels: correlation of mechanical properties to fluorescence.
    Sundararaghavan HG, Monteiro GA, Lapin NA, Chabal YJ, Miksan JR, Shreiber DI.
    J Biomed Mater Res A; 2008 Nov 01; 87(2):308-20. PubMed ID: 18181104
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 32.