These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
286 related items for PubMed ID: 23171060
1. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea. Wang X, Wang L, Zhou J, Hu Y. Comput Methods Biomech Biomed Engin; 2014 Aug; 17(10):1096-107. PubMed ID: 23171060 [Abstract] [Full Text] [Related]
2. Modeling of sound transmission from ear canal to cochlea. Gan RZ, Reeves BP, Wang X. Ann Biomed Eng; 2007 Dec; 35(12):2180-95. PubMed ID: 17882549 [Abstract] [Full Text] [Related]
3. Transient response of the human ear to impulsive stimuli: A finite element analysis. Zhang J, Tian J, Ta N, Rao Z. J Acoust Soc Am; 2018 May; 143(5):2768. PubMed ID: 29857768 [Abstract] [Full Text] [Related]
4. Three-Dimensional Finite Element Modeling of Blast Wave Transmission From the External Ear to a Spiral Cochlea. Brown MA, Bradshaw JJ, Gan RZ. J Biomech Eng; 2022 Jan 01; 144(1):. PubMed ID: 34318317 [Abstract] [Full Text] [Related]
5. Predictions of middle-ear and passive cochlear mechanics using a finite element model of the pediatric ear. Wang X, Keefe DH, Gan RZ. J Acoust Soc Am; 2016 Apr 01; 139(4):1735. PubMed ID: 27106321 [Abstract] [Full Text] [Related]
7. [Comparison of differental intracochlear pressures between round window stimulation and ear canal stimulation]. Wang X. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec 01; 29(6):1109-13. PubMed ID: 23469540 [Abstract] [Full Text] [Related]
8. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes. Cormack J, Liu Y, Nam JH, Gracewski SM. J Acoust Soc Am; 2015 Mar 01; 137(3):1117-25. PubMed ID: 25786927 [Abstract] [Full Text] [Related]
11. Intracochlear pressure and organ of corti impedance from a linear active three-dimensional model. Yoon YJ, Puria S, Steele CR. ORL J Otorhinolaryngol Relat Spec; 2006 Mar 01; 68(6):365-72. PubMed ID: 17065831 [Abstract] [Full Text] [Related]
13. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument. Ghoncheh M, Lilli G, Lenarz T, Maier H. Hear Res; 2016 Oct 01; 340():161-168. PubMed ID: 26723102 [Abstract] [Full Text] [Related]
14. Cochlear model with three-dimensional fluid, inner sulcus and feed-forward mechanism. Steele CR, Lim KM. Audiol Neurootol; 1999 Oct 01; 4(3-4):197-203. PubMed ID: 10187930 [Abstract] [Full Text] [Related]
15. Intracochlear pressure and derived quantities from a three-dimensional model. Yoon YJ, Puria S, Steele CR. J Acoust Soc Am; 2007 Aug 01; 122(2):952-66. PubMed ID: 17672644 [Abstract] [Full Text] [Related]
18. Model predictions for bone conduction perception in the human. Stenfelt S. Hear Res; 2016 Oct 01; 340():135-143. PubMed ID: 26657096 [Abstract] [Full Text] [Related]
19. Frequency tuning of mechanical responses in the mammalian cochlea. Robles L, Alcayaga C. Biol Res; 1996 Oct 01; 29(3):325-31. PubMed ID: 9278704 [Abstract] [Full Text] [Related]
20. A mechano-electro-acoustical model for the cochlea: response to acoustic stimuli. Ramamoorthy S, Deo NV, Grosh K. J Acoust Soc Am; 2007 May 01; 121(5 Pt1):2758-73. PubMed ID: 17550176 [Abstract] [Full Text] [Related] Page: [Next] [New Search]