These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


233 related items for PubMed ID: 2317189

  • 1. Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity.
    Gavin CE, Gunter KK, Gunter TE.
    Biochem J; 1990 Mar 01; 266(2):329-34. PubMed ID: 2317189
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Mn2+ prevents the Ca2+-induced inhibition of ATP synthesis in brain mitochondria.
    Hillered L, Muchiri PM, Nordenbrand K, Ernster L.
    FEBS Lett; 1983 Apr 18; 154(2):247-50. PubMed ID: 6832366
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues.
    Crompton M, Moser R, Lüdi H, Carafoli E.
    Eur J Biochem; 1978 Jan 02; 82(1):25-31. PubMed ID: 23291
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. The role of ADP in the modulation of the calcium-efflux pathway in rat brain mitochondria.
    Vitorica J, Satrústegui J.
    Biochem J; 1985 Jan 01; 225(1):41-9. PubMed ID: 3977831
    [Abstract] [Full Text] [Related]

  • 11. Pathways for Ca2+ efflux in heart and liver mitochondria.
    Rizzuto R, Bernardi P, Favaron M, Azzone GF.
    Biochem J; 1987 Sep 01; 246(2):271-7. PubMed ID: 3689311
    [Abstract] [Full Text] [Related]

  • 12. The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms.
    Nicholls DG, Scott ID.
    Biochem J; 1980 Mar 15; 186(3):833-9. PubMed ID: 7396840
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Mechanism of sodium independent calcium efflux from rat liver mitochondria.
    Gunter TE, Chace JH, Puskin JS, Gunter KK.
    Biochemistry; 1983 Dec 20; 22(26):6341-51. PubMed ID: 6661437
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. The entrapment of the Ca2+ indicator arsenazo III in the matrix space of rat liver mitochondria by permeabilization and resealing. Na+-dependent and -independent effluxes of Ca2+ in arsenazo III-loaded mitochondria.
    Al-Nasser I, Crompton M.
    Biochem J; 1986 Oct 01; 239(1):31-40. PubMed ID: 3800984
    [Abstract] [Full Text] [Related]

  • 18. Effect of micromolar concentrations of manganese ions on calcium-ion cycling in rat liver mitochondria.
    Hughes BP, Exton JH.
    Biochem J; 1983 Jun 15; 212(3):773-82. PubMed ID: 6192809
    [Abstract] [Full Text] [Related]

  • 19. The interaction between manganese and calcium fluxes in pancreatic beta-cells.
    Rorsman P, Hellman B.
    Biochem J; 1983 Feb 15; 210(2):307-14. PubMed ID: 6190477
    [Abstract] [Full Text] [Related]

  • 20. Mn2+ sequestration by mitochondria and inhibition of oxidative phosphorylation.
    Gavin CE, Gunter KK, Gunter TE.
    Toxicol Appl Pharmacol; 1992 Jul 15; 115(1):1-5. PubMed ID: 1631887
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.