These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


193 related items for PubMed ID: 23178719

  • 21. In vitro biological activity and toxicity of tetanus and botulinum neurotoxins.
    Pellizzari R, Rossetto O, Washbourne P, Tonello F, Nicotera PL, Montecucco C.
    Toxicol Lett; 1998 Dec 28; 102-103():191-7. PubMed ID: 10022253
    [Abstract] [Full Text] [Related]

  • 22. Activity-dependent changes in partial VAMP complexes during neurotransmitter release.
    Hua SY, Charlton MP.
    Nat Neurosci; 1999 Dec 28; 2(12):1078-83. PubMed ID: 10570484
    [Abstract] [Full Text] [Related]

  • 23. [Mechanism of action and therapeutic uses of botulinum and tetanus neurotoxins].
    Popoff MR, Marvaud JC, Raffestin S.
    Ann Pharm Fr; 2001 May 28; 59(3):176-90. PubMed ID: 11427819
    [Abstract] [Full Text] [Related]

  • 24. Chelation of zinc antagonizes the neuromuscular blocking properties of the seven serotypes of botulinum neurotoxin as well as tetanus toxin.
    Simpson LL, Coffield JA, Bakry N.
    J Pharmacol Exp Ther; 1993 Nov 28; 267(2):720-7. PubMed ID: 8246147
    [Abstract] [Full Text] [Related]

  • 25. VAMP/synaptobrevin cleavage by tetanus and botulinum neurotoxins is strongly enhanced by acidic liposomes.
    Caccin P, Rossetto O, Rigoni M, Johnson E, Schiavo G, Montecucco C.
    FEBS Lett; 2003 May 08; 542(1-3):132-6. PubMed ID: 12729912
    [Abstract] [Full Text] [Related]

  • 26. Botulinum and Tetanus Neurotoxins.
    Dong M, Masuyer G, Stenmark P.
    Annu Rev Biochem; 2019 Jun 20; 88():811-837. PubMed ID: 30388027
    [Abstract] [Full Text] [Related]

  • 27. S-glutathiolated hepatocyte proteins and insulin disulfides as substrates for reduction by glutaredoxin, thioredoxin, protein disulfide isomerase, and glutathione.
    Jung CH, Thomas JA.
    Arch Biochem Biophys; 1996 Nov 01; 335(1):61-72. PubMed ID: 8914835
    [Abstract] [Full Text] [Related]

  • 28. Noble metal targeting of thioredoxin reductase--covalent complexes with thioredoxin and thioredoxin-related protein of 14 kDa triggered by cisplatin.
    Prast-Nielsen S, Cebula M, Pader I, Arnér ES.
    Free Radic Biol Med; 2010 Dec 01; 49(11):1765-78. PubMed ID: 20851179
    [Abstract] [Full Text] [Related]

  • 29. Tetanus and botulism neurotoxins: a new group of zinc proteases.
    Montecucco C, Schiavo G.
    Trends Biochem Sci; 1993 Sep 01; 18(9):324-7. PubMed ID: 7901925
    [Abstract] [Full Text] [Related]

  • 30. Clostridial neurotoxins in the age of molecular medicine.
    Coffield JA, Considine RV, Simpson LL.
    Trends Microbiol; 1994 Mar 01; 2(3):67-9; discussion 69-72. PubMed ID: 7908844
    [No Abstract] [Full Text] [Related]

  • 31. Different mechanisms of inhibition of nerve terminals by botulinum and snake presynaptic neurotoxins.
    Montecucco C, Rossetto O, Caccin P, Rigoni M, Carli L, Morbiato L, Muraro L, Paoli M.
    Toxicon; 2009 Oct 01; 54(5):561-4. PubMed ID: 19111566
    [Abstract] [Full Text] [Related]

  • 32. To be helped or not helped, that is the question.
    Lemichez E, Boquet P.
    J Cell Biol; 2003 Mar 31; 160(7):991-2. PubMed ID: 12668655
    [Abstract] [Full Text] [Related]

  • 33. [Molecular mechanism of action of tetanus toxin and botulinum neurotoxins].
    Poulain B.
    Pathol Biol (Paris); 1994 Feb 31; 42(2):173-82. PubMed ID: 7916455
    [Abstract] [Full Text] [Related]

  • 34. Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates.
    Bade S, Rummel A, Reisinger C, Karnath T, Ahnert-Hilger G, Bigalke H, Binz T.
    J Neurochem; 2004 Dec 31; 91(6):1461-72. PubMed ID: 15584922
    [Abstract] [Full Text] [Related]

  • 35. Botulinum and Tetanus Neurotoxin-Induced Blockade of Synaptic Transmission in Networked Cultures of Human and Rodent Neurons.
    Beske PH, Bradford AB, Grynovicki JO, Glotfelty EJ, Hoffman KM, Hubbard KS, Tuznik KM, McNutt PM.
    Toxicol Sci; 2016 Feb 31; 149(2):503-15. PubMed ID: 26615023
    [Abstract] [Full Text] [Related]

  • 36. Insights into the specificity of thioredoxin reductase-thioredoxin interactions. A structural and functional investigation of the yeast thioredoxin system.
    Oliveira MA, Discola KF, Alves SV, Medrano FJ, Guimarães BG, Netto LE.
    Biochemistry; 2010 Apr 20; 49(15):3317-26. PubMed ID: 20235561
    [Abstract] [Full Text] [Related]

  • 37. Redox active disulfides: the thioredoxin system as a drug target.
    Kirkpatrick DL, Ehrmantraut G, Stettner S, Kunkel M, Powis G.
    Oncol Res; 1997 Apr 20; 9(6-7):351-6. PubMed ID: 9406241
    [Abstract] [Full Text] [Related]

  • 38. Role of AIP56 disulphide bond and its reduction by cytosolic redox systems for efficient intoxication.
    Pereira C, Rodrigues IS, Pereira LMG, Lisboa J, Pinto RD, Araújo L, Oliveira P, Benz R, Dos Santos NMS, do Vale A.
    Cell Microbiol; 2020 Jan 20; 22(1):e13109. PubMed ID: 31454143
    [Abstract] [Full Text] [Related]

  • 39. Role of metals in the biological activity of Clostridium botulinum neurotoxins.
    Eswaramoorthy S, Kumaran D, Keller J, Swaminathan S.
    Biochemistry; 2004 Mar 02; 43(8):2209-16. PubMed ID: 14979717
    [Abstract] [Full Text] [Related]

  • 40. Tables of Toxicity of Botulinum and Tetanus Neurotoxins.
    Rossetto O, Montecucco C.
    Toxins (Basel); 2019 Nov 22; 11(12):. PubMed ID: 31771110
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.