These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
135 related items for PubMed ID: 23180376
1. Bioprospecting of thermo- and osmo-tolerant fungi from mango pulp-peel compost for bioethanol production. Dandi ND, Dandi BN, Chaudhari AB. Antonie Van Leeuwenhoek; 2013 Apr; 103(4):723-36. PubMed ID: 23180376 [Abstract] [Full Text] [Related]
2. Bioprospecting thermotolerant yeasts from distillery effluent and molasses for high-temperature ethanol production. Avchar R, Lanjekar V, Baghela A. J Appl Microbiol; 2022 Feb; 132(2):1134-1151. PubMed ID: 34487585 [Abstract] [Full Text] [Related]
3. Compost as an untapped niche for thermotolerant yeasts capable of high-temperature ethanol production. Avchar R, Lanjekar V, Dhakephalkar PK, Dagar SS, Baghela A. Lett Appl Microbiol; 2022 Jan; 74(1):109-121. PubMed ID: 34714552 [Abstract] [Full Text] [Related]
4. Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate. Yuangsaard N, Yongmanitchai W, Yamada M, Limtong S. Antonie Van Leeuwenhoek; 2013 Mar; 103(3):577-88. PubMed ID: 23132277 [Abstract] [Full Text] [Related]
5. Selection of stress-tolerant yeasts for simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash to ethanol. Watanabe T, Srichuwong S, Arakane M, Tamiya S, Yoshinaga M, Watanabe I, Yamamoto M, Ando A, Tokuyasu K, Nakamura T. Bioresour Technol; 2010 Dec; 101(24):9710-4. PubMed ID: 20705456 [Abstract] [Full Text] [Related]
6. High temperature alcoholic fermentation of orange peel by the newly isolated thermotolerant Pichia kudriavzevii KVMP10. Koutinas M, Patsalou M, Stavrinou S, Vyrides I. Lett Appl Microbiol; 2016 Jan; 62(1):75-83. PubMed ID: 26510181 [Abstract] [Full Text] [Related]
7. Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol. Benjaphokee S, Hasegawa D, Yokota D, Asvarak T, Auesukaree C, Sugiyama M, Kaneko Y, Boonchird C, Harashima S. N Biotechnol; 2012 Feb 15; 29(3):379-86. PubMed ID: 21820088 [Abstract] [Full Text] [Related]
8. Physiological responses contributing to multiple stress tolerance in Pichia kudriavzevii with potential enhancement for ethanol fermentation. Pongcharoen P, Tawong W, Pathaichindachote W, Rod-In W. J Biosci Bioeng; 2024 Oct 15; 138(4):314-323. PubMed ID: 39098474 [Abstract] [Full Text] [Related]
9. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. Radecka D, Mukherjee V, Mateo RQ, Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM. FEMS Yeast Res; 2015 Sep 15; 15(6):. PubMed ID: 26126524 [Abstract] [Full Text] [Related]
10. Ethanol production from dilute-acid steam exploded lignocellulosic feedstocks using an isolated multistress-tolerant Pichia kudriavzevii strain. Yuan SF, Guo GL, Hwang WS. Microb Biotechnol; 2017 Nov 15; 10(6):1581-1590. PubMed ID: 28474425 [Abstract] [Full Text] [Related]
11. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. Buaban B, Inoue H, Yano S, Tanapongpipat S, Ruanglek V, Champreda V, Pichyangkura R, Rengpipat S, Eurwilaichitr L. J Biosci Bioeng; 2010 Jul 15; 110(1):18-25. PubMed ID: 20541110 [Abstract] [Full Text] [Related]
12. The influence of presaccharification, fermentation temperature and yeast strain on ethanol production from sugarcane bagasse. de Souza CJ, Costa DA, Rodrigues MQ, dos Santos AF, Lopes MR, Abrantes AB, dos Santos Costa P, Silveira WB, Passos FM, Fietto LG. Bioresour Technol; 2012 Apr 15; 109():63-9. PubMed ID: 22285296 [Abstract] [Full Text] [Related]
13. Functionality of selected strains of moulds and yeasts from Vietnamese rice wine starters. Dung NT, Rombouts FM, Nout MJ. Food Microbiol; 2006 Jun 15; 23(4):331-40. PubMed ID: 16943022 [Abstract] [Full Text] [Related]
14. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts. Kumari R, Pramanik K. Appl Biochem Biotechnol; 2012 Jun 15; 167(4):873-84. PubMed ID: 22639357 [Abstract] [Full Text] [Related]
15. Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D(5)A and thermotolerant Kluyveromyces marxianus IMB strains. Faga BA, Wilkins MR, Banat IM. Bioresour Technol; 2010 Apr 15; 101(7):2273-9. PubMed ID: 19939673 [Abstract] [Full Text] [Related]
16. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. Li Y, Park JY, Shiroma R, Tokuyasu K. J Biosci Bioeng; 2011 Jun 15; 111(6):682-6. PubMed ID: 21397557 [Abstract] [Full Text] [Related]
17. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Alfenore S, Molina-Jouve C, Guillouet SE, Uribelarrea JL, Goma G, Benbadis L. Appl Microbiol Biotechnol; 2002 Oct 15; 60(1-2):67-72. PubMed ID: 12382043 [Abstract] [Full Text] [Related]
18. Bioethanol production from taro waste using thermo-tolerant yeast Kluyveromyces marxianus K21. Wu WH, Hung WC, Lo KY, Chen YH, Wan HP, Cheng KC. Bioresour Technol; 2016 Feb 15; 201():27-32. PubMed ID: 26615498 [Abstract] [Full Text] [Related]
19. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Najafpour G, Younesi H, Syahidah Ku Ismail K. Bioresour Technol; 2004 May 15; 92(3):251-60. PubMed ID: 14766158 [Abstract] [Full Text] [Related]
20. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Parawira W, Tekere M. Crit Rev Biotechnol; 2011 Mar 15; 31(1):20-31. PubMed ID: 20513164 [Abstract] [Full Text] [Related] Page: [Next] [New Search]