These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
707 related items for PubMed ID: 23181289
1. Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties. Kiss PT, Bertsyk P, Baranyai A. J Chem Phys; 2012 Nov 21; 137(19):194102. PubMed ID: 23181289 [Abstract] [Full Text] [Related]
2. Testing the recent charge-on-spring type polarizable water models. II. Vapor-liquid equilibrium. Kiss PT, Baranyai A. J Chem Phys; 2012 Nov 21; 137(19):194103. PubMed ID: 23181290 [Abstract] [Full Text] [Related]
3. Clusters of classical water models. Kiss PT, Baranyai A. J Chem Phys; 2009 Nov 28; 131(20):204310. PubMed ID: 19947683 [Abstract] [Full Text] [Related]
4. Comparison of selected polarizable and nonpolarizable water models in molecular dynamics simulations of ice I(h). Gladich I, Roeselová M. Phys Chem Chem Phys; 2012 Aug 28; 14(32):11371-85. PubMed ID: 22801804 [Abstract] [Full Text] [Related]
5. Melting temperature of ice Ih calculated from coexisting solid-liquid phases. Wang J, Yoo S, Bai J, Morris JR, Zeng XC. J Chem Phys; 2005 Jul 15; 123(3):36101. PubMed ID: 16080767 [Abstract] [Full Text] [Related]
6. The melting temperature of the most common models of water. Vega C, Sanz E, Abascal JL. J Chem Phys; 2005 Mar 15; 122(11):114507. PubMed ID: 15836229 [Abstract] [Full Text] [Related]
7. Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice. Yu H, van Gunsteren WF. J Chem Phys; 2004 Nov 15; 121(19):9549-64. PubMed ID: 15538877 [Abstract] [Full Text] [Related]
8. Surface properties of the polarizable Baranyai-Kiss water model. Kiss P, Darvas M, Baranyai A, Jedlovszky P. J Chem Phys; 2012 Mar 21; 136(11):114706. PubMed ID: 22443789 [Abstract] [Full Text] [Related]
11. A systematic development of a polarizable potential of water. Kiss PT, Baranyai A. J Chem Phys; 2013 May 28; 138(20):204507. PubMed ID: 23742493 [Abstract] [Full Text] [Related]
12. Melting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials. Koyama Y, Tanaka H, Gao G, Zeng XC. J Chem Phys; 2004 Oct 22; 121(16):7926-31. PubMed ID: 15485255 [Abstract] [Full Text] [Related]
13. Molecular dynamics simulations of the thermal conductivity of methane hydrate. Jiang H, Myshakin EM, Jordan KD, Warzinski RP. J Phys Chem B; 2008 Aug 21; 112(33):10207-16. PubMed ID: 18652505 [Abstract] [Full Text] [Related]
14. Density maximum and polarizable models of water. Kiss PT, Baranyai A. J Chem Phys; 2012 Aug 28; 137(8):084506. PubMed ID: 22938249 [Abstract] [Full Text] [Related]
16. Dielectric constant of ices and water: a lesson about water interactions. Aragones JL, MacDowell LG, Vega C. J Phys Chem A; 2011 Jun 16; 115(23):5745-58. PubMed ID: 20866096 [Abstract] [Full Text] [Related]
17. Transferable model of water with variable molecular size. Kiss PT, Baranyai A. J Chem Phys; 2011 Jun 07; 134(21):214111. PubMed ID: 21663348 [Abstract] [Full Text] [Related]
18. A new polarizable force field for alkali and halide ions. Kiss PT, Baranyai A. J Chem Phys; 2014 Sep 21; 141(11):114501. PubMed ID: 25240358 [Abstract] [Full Text] [Related]
20. Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. Lamoureux G, Roux B. J Phys Chem B; 2006 Feb 23; 110(7):3308-22. PubMed ID: 16494345 [Abstract] [Full Text] [Related] Page: [Next] [New Search]