These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 231980
1. The influence of adenosine on intermediary metabolism of isolated hepatocytes. Marchand JC, Lavoinne A, Giroz M, Matray F. Biochimie; 1979; 61(11-12):1273-82. PubMed ID: 231980 [Abstract] [Full Text] [Related]
2. The mechanism by which adenosine decreases gluconeogenesis from lactate in isolated rat hepatocytes. Lavoinne A, Buc HA, Claeyssens S, Pinosa M, Matray F. Biochem J; 1987 Sep 01; 246(2):449-54. PubMed ID: 2825638 [Abstract] [Full Text] [Related]
4. The interaction between the cytosolic pyridine nucleotide redox potential and gluconeogenesis from lactate/pyruvate in isolated rat hepatocytes. Implications for investigations of hormone action. Sistare FD, Haynes RC. J Biol Chem; 1985 Oct 15; 260(23):12748-53. PubMed ID: 4044607 [Abstract] [Full Text] [Related]
6. Effect of adenosine on the adenine nucleotide content and metabolism of hepatocytes. Lund P, Cornell NW, Krebs HA. Biochem J; 1975 Dec 15; 152(3):593-9. PubMed ID: 1227504 [Abstract] [Full Text] [Related]
10. Inhibition of gluconeogenesis by extracellular ATP in isolated rat hepatocytes. Asensi M, Lopez-Rodas A, Sastre J, Viña J, Estrela JM. Am J Physiol; 1991 Dec 15; 261(6 Pt 2):R1522-6. PubMed ID: 1750576 [Abstract] [Full Text] [Related]
11. Metabolic adaptation to hypoxia. Redox state of the cellular free NAD pools, phosphorylation state of the adenylate system and the (Na+-K+)-stimulated ATP-ase in rat liver. Kinnula VL, Hassinen I. Acta Physiol Scand; 1978 Sep 15; 104(1):109-16. PubMed ID: 211796 [Abstract] [Full Text] [Related]
12. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents. Pryor HJ, Smyth JE, Quinlan PT, Halestrap AP. Biochem J; 1987 Oct 15; 247(2):449-57. PubMed ID: 3426547 [Abstract] [Full Text] [Related]
13. Energy status and oxidation-reduction status in rat liver at high altitude (3.8 km). Reed RD, Pace N. Aviat Space Environ Med; 1980 May 15; 51(5):448-53. PubMed ID: 7387568 [Abstract] [Full Text] [Related]
15. The mechanisms by which mild respiratory chain inhibitors inhibit hepatic gluconeogenesis. Owen MR, Halestrap AP. Biochim Biophys Acta; 1993 Apr 05; 1142(1-2):11-22. PubMed ID: 8457580 [Abstract] [Full Text] [Related]
16. Influence of ethanol oxidation rate on the lactate/pyruvate ratio and phosphorylation state of the liver in fed rats. Pösö AR, Forsander OA. Acta Chem Scand B; 1976 Apr 05; 30 B(9):801-6. PubMed ID: 188281 [Abstract] [Full Text] [Related]
17. [Independence of the (NAD+):(NADH) ratio from the adenylic system in the liver cytoplasm of the developing chick embryo]. Ermolaeva LP, Iurovitskiĭ IuG, Mil'man LS. Ontogenez; 1979 Apr 05; 10(4):413-6. PubMed ID: 225704 [Abstract] [Full Text] [Related]
18. Control of gluconeogenesis in liver. 3. Effects of L-lactate, pyruvate, fructose, glucagon, epinephrine, and adenosine 3',5'-monophosphate on gluconeogenic intermediates in the perfused rat liver. Exton JH, Park CR. J Biol Chem; 1969 Mar 25; 244(6):1424-33. PubMed ID: 4304225 [No Abstract] [Full Text] [Related]
19. The effects of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on glycolysis and biosynthetic processes of the isolated perfused rat liver. Biebuyck JF, Lund P, Krebs HA. Biochem J; 1972 Jul 25; 128(3):711-20. PubMed ID: 4344008 [Abstract] [Full Text] [Related]
20. The development of gluconeogenesis in rat liver. Controlling factors in the newborn. Ballard FJ. Biochem J; 1971 Sep 25; 124(2):265-74. PubMed ID: 4333849 [Abstract] [Full Text] [Related] Page: [Next] [New Search]