These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
177 related items for PubMed ID: 23200257
1. The natural shock absorption of the leg spring. Kim W, João F, Tan J, Mota P, Vleck V, Aguiar L, Veloso A. J Biomech; 2013 Jan 04; 46(1):129-36. PubMed ID: 23200257 [Abstract] [Full Text] [Related]
2. Linear center-of-mass dynamics emerge from non-linear leg-spring properties in human hopping. Riese S, Seyfarth A, Grimmer S. J Biomech; 2013 Sep 03; 46(13):2207-12. PubMed ID: 23880438 [Abstract] [Full Text] [Related]
3. Sex differences in relationship between passive ankle stiffness and leg stiffness during hopping. Hobara H, Kato E, Kobayashi Y, Ogata T. J Biomech; 2012 Nov 15; 45(16):2750-4. PubMed ID: 23051683 [Abstract] [Full Text] [Related]
4. Human hoppers compensate for simultaneous changes in surface compression and damping. Moritz CT, Farley CT. J Biomech; 2006 Nov 15; 39(6):1030-8. PubMed ID: 16549093 [Abstract] [Full Text] [Related]
5. Running on uneven ground: leg adjustment to vertical steps and self-stability. Grimmer S, Ernst M, Günther M, Blickhan R. J Exp Biol; 2008 Sep 15; 211(Pt 18):2989-3000. PubMed ID: 18775936 [Abstract] [Full Text] [Related]
9. Influence of swing leg movement on running stability. Knuesel H, Geyer H, Seyfarth A. Hum Mov Sci; 2005 Aug 15; 24(4):532-43. PubMed ID: 16213046 [Abstract] [Full Text] [Related]
10. Leg stiffness increases with speed to modulate gait frequency and propulsion energy. Kim S, Park S. J Biomech; 2011 Apr 29; 44(7):1253-8. PubMed ID: 21396646 [Abstract] [Full Text] [Related]
12. Running in the real world: adjusting leg stiffness for different surfaces. Ferris DP, Louie M, Farley CT. Proc Biol Sci; 1998 Jun 07; 265(1400):989-94. PubMed ID: 9675909 [Abstract] [Full Text] [Related]
13. Consequences of forward translation of the point of force application for the mechanics of running. Bullimore SR, Burn JF. J Theor Biol; 2006 Jan 07; 238(1):211-9. PubMed ID: 15996682 [Abstract] [Full Text] [Related]
14. Leg-adjustment strategies for stable running in three dimensions. Peuker F, Maufroy C, Seyfarth A. Bioinspir Biomim; 2012 Sep 07; 7(3):036002. PubMed ID: 22498642 [Abstract] [Full Text] [Related]
15. Stance leg control: variation of leg parameters supports stable hopping. Riese S, Seyfarth A. Bioinspir Biomim; 2012 Mar 07; 7(1):016006. PubMed ID: 22183256 [Abstract] [Full Text] [Related]
16. Spring-like gait mechanics observed during walking in both young and older adults. Hong H, Kim S, Kim C, Lee S, Park S. J Biomech; 2013 Jan 04; 46(1):77-82. PubMed ID: 23199897 [Abstract] [Full Text] [Related]
17. Effective leg stiffness in running. Blum Y, Lipfert SW, Seyfarth A. J Biomech; 2009 Oct 16; 42(14):2400-5. PubMed ID: 19647825 [Abstract] [Full Text] [Related]
18. Effects of altered stride frequency and contact time on leg-spring behavior in human running. Morin JB, Samozino P, Zameziati K, Belli A. J Biomech; 2007 Oct 16; 40(15):3341-8. PubMed ID: 17602692 [Abstract] [Full Text] [Related]
19. Maneuvers during legged locomotion. Jindrich DL, Qiao M. Chaos; 2009 Jun 16; 19(2):026105. PubMed ID: 19566265 [Abstract] [Full Text] [Related]
20. Leg stiffness of older and younger individuals over a range of hopping frequencies. Hobara H, Kobayashi Y, Yoshida E, Mochimaru M. J Electromyogr Kinesiol; 2015 Apr 16; 25(2):305-9. PubMed ID: 25716326 [Abstract] [Full Text] [Related] Page: [Next] [New Search]