These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


267 related items for PubMed ID: 23208496

  • 1. CD44 promotes Kras-dependent lung adenocarcinoma.
    Zhao P, Damerow MS, Stern P, Liu AH, Sweet-Cordero A, Siziopikou K, Neilson JR, Sharp PA, Cheng C.
    Oncogene; 2013 Oct 24; 32(43):5186-90. PubMed ID: 23208496
    [Abstract] [Full Text] [Related]

  • 2. Kras mutations increase telomerase activity and targeting telomerase is a promising therapeutic strategy for Kras-mutant NSCLC.
    Liu W, Yin Y, Wang J, Shi B, Zhang L, Qian D, Li C, Zhang H, Wang S, Zhu J, Gao L, Zhang Q, Jia B, Hao L, Wang C, Zhang B.
    Oncotarget; 2017 Jan 03; 8(1):179-190. PubMed ID: 27329725
    [Abstract] [Full Text] [Related]

  • 3. Targeting PKCι-PAK1 signaling pathways in EGFR and KRAS mutant adenocarcinoma and lung squamous cell carcinoma.
    Ito M, Codony-Servat C, Codony-Servat J, Lligé D, Chaib I, Sun X, Miao J, Sun R, Cai X, Verlicchi A, Okada M, Molina-Vila MA, Karachaliou N, Cao P, Rosell R.
    Cell Commun Signal; 2019 Oct 28; 17(1):137. PubMed ID: 31660987
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Impaired AKT signaling and lung tumorigenesis by PIERCE1 ablation in KRAS-mutant non-small cell lung cancer.
    Roh JI, Lee J, Sung YH, Oh J, Hyeon DY, Kim Y, Lee S, Devkota S, Kim HJ, Park B, Nam T, Song Y, Kim Y, Hwang D, Lee HW.
    Oncogene; 2020 Sep 28; 39(36):5876-5887. PubMed ID: 32728173
    [Abstract] [Full Text] [Related]

  • 10. Oncogenic KRAS-induced epiregulin overexpression contributes to aggressive phenotype and is a promising therapeutic target in non-small-cell lung cancer.
    Sunaga N, Kaira K, Imai H, Shimizu K, Nakano T, Shames DS, Girard L, Soh J, Sato M, Iwasaki Y, Ishizuka T, Gazdar AF, Minna JD, Mori M.
    Oncogene; 2013 Aug 22; 32(34):4034-42. PubMed ID: 22964644
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Context-Dependent Effects of Amplified MAPK Signaling during Lung Adenocarcinoma Initiation and Progression.
    Cicchini M, Buza EL, Sagal KM, Gudiel AA, Durham AC, Feldser DM.
    Cell Rep; 2017 Feb 21; 18(8):1958-1969. PubMed ID: 28228261
    [Abstract] [Full Text] [Related]

  • 18. An integrative pharmacogenomics analysis identifies therapeutic targets in KRAS-mutant lung cancer.
    Wang H, Lv Q, Xu Y, Cai Z, Zheng J, Cheng X, Dai Y, Jänne PA, Ambrogio C, Köhler J.
    EBioMedicine; 2019 Nov 21; 49():106-117. PubMed ID: 31668570
    [Abstract] [Full Text] [Related]

  • 19. Modeling K-Ras-driven lung adenocarcinoma in mice: preclinical validation of therapeutic targets.
    Drosten M, Barbacid M.
    J Mol Med (Berl); 2016 Feb 21; 94(2):121-35. PubMed ID: 26526121
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.