These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


314 related items for PubMed ID: 23209128

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Identification of sequence motifs in Lhcx proteins that confer qE-based photoprotection in the diatom Phaeodactylum tricornutum.
    Buck JM, Kroth PG, Lepetit B.
    Plant J; 2021 Dec; 108(6):1721-1734. PubMed ID: 34651379
    [Abstract] [Full Text] [Related]

  • 4. The redox state of the plastoquinone (PQ) pool is connected to thylakoid lipid saturation in a marine diatom.
    Cheong KY, Jouhet J, Maréchal E, Falkowski PG.
    Photosynth Res; 2022 Aug; 153(1-2):71-82. PubMed ID: 35389175
    [Abstract] [Full Text] [Related]

  • 5. The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana.
    Grouneva I, Jakob T, Wilhelm C, Goss R.
    Biochim Biophys Acta; 2009 Jul; 1787(7):929-38. PubMed ID: 19232316
    [Abstract] [Full Text] [Related]

  • 6. The diadinoxanthin diatoxanthin cycle induces structural rearrangements of the isolated FCP antenna complexes of the pennate diatom Phaeodactylum tricornutum.
    Schaller-Laudel S, Volke D, Redlich M, Kansy M, Hoffmann R, Wilhelm C, Goss R.
    Plant Physiol Biochem; 2015 Nov; 96():364-76. PubMed ID: 26368016
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum.
    Giovagnetti V, Ruban AV.
    Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):218-230. PubMed ID: 27989819
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Biochemical and molecular properties of LHCX1, the essential regulator of dynamic photoprotection in diatoms.
    Giovagnetti V, Jaubert M, Shukla MK, Ungerer P, Bouly JP, Falciatore A, Ruban AV.
    Plant Physiol; 2022 Jan 20; 188(1):509-525. PubMed ID: 34595530
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Regulation of Phaeodactylum plastid gene transcription by redox, light, and circadian signals.
    Kayanja GE, Ibrahim IM, Puthiyaveetil S.
    Photosynth Res; 2021 Mar 20; 147(3):317-328. PubMed ID: 33387192
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Supplementary ultraviolet-B radiation induces a rapid reversal of the diadinoxanthin cycle in the strong light-exposed diatom Phaeodactylum tricornutum.
    Mewes H, Richter M.
    Plant Physiol; 2002 Nov 20; 130(3):1527-35. PubMed ID: 12428017
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Temperature-induced greening of Chlorella vulgaris. The role of the cellular energy balance and zeaxanthin-dependent nonphotochemical quenching.
    Wilson KE, Król M, Huner NP.
    Planta; 2003 Aug 20; 217(4):616-27. PubMed ID: 12905022
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.