These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


210 related items for PubMed ID: 23214927

  • 1. An improved screening tool for predicting volatilization of pesticides applied to soils.
    Davie-Martin CL, Hageman KJ, Chin YP.
    Environ Sci Technol; 2013 Jan 15; 47(2):868-76. PubMed ID: 23214927
    [Abstract] [Full Text] [Related]

  • 2. Volatilization modeling of two herbicides from soil in a wind tunnel experiment under varying humidity conditions.
    Schneider M, Goss KU.
    Environ Sci Technol; 2012 Nov 20; 46(22):12527-33. PubMed ID: 23130847
    [Abstract] [Full Text] [Related]

  • 3. Influence of Temperature, Relative Humidity, and Soil Properties on the Soil-Air Partitioning of Semivolatile Pesticides: Laboratory Measurements and Predictive Models.
    Davie-Martin CL, Hageman KJ, Chin YP, Rougé V, Fujita Y.
    Environ Sci Technol; 2015 Sep 01; 49(17):10431-9. PubMed ID: 26258946
    [Abstract] [Full Text] [Related]

  • 4. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT, Bidleman TF.
    Sci Total Environ; 2007 May 01; 377(1):61-80. PubMed ID: 17346778
    [Abstract] [Full Text] [Related]

  • 5. Modeling pesticide volatilization: testing the additional effect of gaseous adsorption on soil solid surfaces.
    Garcia L, Bedos C, Génermont S, Benoit P, Barriuso E, Cellier P.
    Environ Sci Technol; 2014 May 06; 48(9):4991-8. PubMed ID: 24702253
    [Abstract] [Full Text] [Related]

  • 6. A new pseudo-partition coefficient based on a weather-adjusted multicomponent model for mushroom uptake of pesticides from soil.
    Li Z.
    Environ Pollut; 2020 Jan 06; 256():113372. PubMed ID: 31672361
    [Abstract] [Full Text] [Related]

  • 7. Soil column leaching of pesticides.
    Katagi T.
    Rev Environ Contam Toxicol; 2013 Jan 06; 221():1-105. PubMed ID: 23090630
    [Abstract] [Full Text] [Related]

  • 8. Prediction of pesticide volatilization with PELMO 3.31.
    Ferrari F, Klein M, Capri E, Trevisan M.
    Chemosphere; 2005 Jul 06; 60(5):705-13. PubMed ID: 15963809
    [Abstract] [Full Text] [Related]

  • 9. Adsorption and desorption of chlorpyrifos to soils and sediments.
    Gebremariam SY, Beutel MW, Yonge DR, Flury M, Harsh JB.
    Rev Environ Contam Toxicol; 2012 Jul 06; 215():123-75. PubMed ID: 22057931
    [Abstract] [Full Text] [Related]

  • 10. Organochlorine pesticides in soils of Mexico and the potential for soil-air exchange.
    Wong F, Alegria HA, Bidleman TF.
    Environ Pollut; 2010 Mar 06; 158(3):749-55. PubMed ID: 19910095
    [Abstract] [Full Text] [Related]

  • 11. Measurements and modeling of pesticide persistence in soil at the catchment scale.
    Ghafoor A, Jarvis NJ, Thierfelder T, Stenström J.
    Sci Total Environ; 2011 Apr 15; 409(10):1900-8. PubMed ID: 21353292
    [Abstract] [Full Text] [Related]

  • 12. Aging of organochlorine pesticides and polychlorinated biphenyls in muck soil: volatilization, bioaccessibility, and degradation.
    Wong F, Bidleman TF.
    Environ Sci Technol; 2011 Feb 01; 45(3):958-63. PubMed ID: 21204520
    [Abstract] [Full Text] [Related]

  • 13. Analytical solution describing pesticide volatilization from soil affected by a change in surface condition.
    Yates SR.
    J Environ Qual; 2009 Feb 01; 38(1):259-67. PubMed ID: 19141816
    [Abstract] [Full Text] [Related]

  • 14. An improved description of pesticide volatilization: refinement of the pesticide leaching model (PELMO).
    Wolters A, Klein M, Vereecken H.
    J Environ Qual; 2004 Feb 01; 33(5):1629-37. PubMed ID: 15356222
    [Abstract] [Full Text] [Related]

  • 15. Pesticide volatilization from soil: lysimeter measurements versus predictions of European registration models.
    Wolters A, Linnemann V, Herbst M, Klein M, Schäffer A, Vereecken H.
    J Environ Qual; 2003 Feb 01; 32(4):1183-93. PubMed ID: 12931871
    [Abstract] [Full Text] [Related]

  • 16. Estimation of the volatilization of organic compounds from soil surfaces.
    Voutsas E, Vavva C, Magoulas K, Tassios D.
    Chemosphere; 2005 Feb 01; 58(6):751-8. PubMed ID: 15621188
    [Abstract] [Full Text] [Related]

  • 17. A new tool for laboratory studies on volatilization: extension of applicability of the photovolatility chamber.
    Wolters A, Kromer T, Linnemann V, Schäffer A, Vereecken H.
    Environ Toxicol Chem; 2003 Apr 01; 22(4):791-7. PubMed ID: 12685714
    [Abstract] [Full Text] [Related]

  • 18. Evaporation drift of pesticides active ingredients.
    De Schampheleire M, Nuyttens D, De Keyser D, Spanoghe P.
    Commun Agric Appl Biol Sci; 2008 Apr 01; 73(4):739-42. PubMed ID: 19226822
    [Abstract] [Full Text] [Related]

  • 19. Fate and transport of monoterpenes through soils. Part II: calculation of the effect of soil temperature, water saturation and organic carbon content.
    van Roon A, Parsons JR, Krap L, Govers HA.
    Chemosphere; 2005 Sep 01; 61(1):129-38. PubMed ID: 16157175
    [Abstract] [Full Text] [Related]

  • 20. An alternative approach for the use of water solubility of nonionic pesticides in the modeling of the soil sorption coefficients.
    dos Reis RR, Sampaio SC, de Melo EB.
    Water Res; 2014 Apr 15; 53():191-9. PubMed ID: 24525068
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.