These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
323 related items for PubMed ID: 23219474
1. Flue gas desulfurization gypsum and coal fly ash as basic components of prefabricated building materials. Telesca A, Marroccoli M, Calabrese D, Valenti GL, Montagnaro F. Waste Manag; 2013 Mar; 33(3):628-33. PubMed ID: 23219474 [Abstract] [Full Text] [Related]
2. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder. Zhong S, Ni K, Li J. Waste Manag; 2012 Jul; 32(7):1468-72. PubMed ID: 22440404 [Abstract] [Full Text] [Related]
3. Potential application of coal-fuel oil ash for the manufacture of building materials. Cioffi R, Marroccoli M, Sansone L, Santoro L. J Hazard Mater; 2005 Sep 30; 124(1-3):101-6. PubMed ID: 15985327 [Abstract] [Full Text] [Related]
4. Study of the use of coal fly ash as an additive to minimise fluoride leaching from FGD gypsum for its disposal. Alvarez-Ayuso E, Querol X. Chemosphere; 2008 Mar 30; 71(1):140-6. PubMed ID: 18063008 [Abstract] [Full Text] [Related]
5. Analysis of naturally-occurring radionuclides in coal combustion fly ash, gypsum, and scrubber residue samples. Roper AR, Stabin MG, Delapp RC, Kosson DS. Health Phys; 2013 Mar 30; 104(3):264-9. PubMed ID: 23361421 [Abstract] [Full Text] [Related]
6. Gypsum treated fly ash as a liner for waste disposal facilities. Sivapullaiah PV, Baig MA. Waste Manag; 2011 Feb 30; 31(2):359-69. PubMed ID: 20817503 [Abstract] [Full Text] [Related]
7. Fly and bottom ashes from biomass combustion as cement replacing components in mortars production: rheological behaviour of the pastes and materials compression strength. Maschio S, Tonello G, Piani L, Furlani E. Chemosphere; 2011 Oct 30; 85(4):666-71. PubMed ID: 21762950 [Abstract] [Full Text] [Related]
8. Alkali-activated complex binders from class C fly ash and Ca-containing admixtures. Guo X, Shi H, Chen L, Dick WA. J Hazard Mater; 2010 Jan 15; 173(1-3):480-6. PubMed ID: 19767143 [Abstract] [Full Text] [Related]
9. Optimizing the specific surface area of fly ash-based sorbents for flue gas desulfurization. Lee KT, Bhatia S, Mohamed AR, Chu KH. Chemosphere; 2006 Jan 15; 62(1):89-96. PubMed ID: 15996711 [Abstract] [Full Text] [Related]
10. Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production. Wu K, Shi H, Guo X. Waste Manag; 2011 Jan 15; 31(9-10):2001-8. PubMed ID: 21616653 [Abstract] [Full Text] [Related]
11. Characteristics of fly ash from the dry flue gas desulfurization system for iron ore sintering plants. Sheng G, Huang P, Mou Y, Zhou C. Environ Technol; 2012 Jan 15; 33(7-9):837-44. PubMed ID: 22720407 [Abstract] [Full Text] [Related]
12. Coal fly ash as raw material for the manufacture of geopolymer-based products. Andini S, Cioffi R, Colangelo F, Grieco T, Montagnaro F, Santoro L. Waste Manag; 2008 Jan 15; 28(2):416-23. PubMed ID: 17382528 [Abstract] [Full Text] [Related]
13. Biogeochemical oxidation of calcium sulfite hemihydrate to gypsum in flue gas desulfurization byproduct using sulfur-oxidizing bacteria. Graves D, Smith JJ, Chen L, Kreinberg A, Wallace B, White R. J Environ Manage; 2017 Oct 01; 201():357-365. PubMed ID: 28692835 [Abstract] [Full Text] [Related]
14. Influence of Calcined Flue Gas Desulfurization Gypsum and Calcium Aluminate on the Strength and AFt Evolution of Fly Ash Blended Concrete under Steam Curing. Zhang Y, Zhang H, Zhang X. Materials (Basel); 2021 Nov 25; 14(23):. PubMed ID: 34885324 [Abstract] [Full Text] [Related]
15. Fate of mercury in flue gas desulfurization gypsum determined by Temperature Programmed Decomposition and Sequential Chemical Extraction. Zhu Z, Zhuo Y, Fan Y, Wang Z. J Environ Sci (China); 2016 May 25; 43():169-176. PubMed ID: 27155422 [Abstract] [Full Text] [Related]
16. Modification of FGD gypsum in hydrothermal mixed salt solution. Wu XQ, Wu ZB. J Environ Sci (China); 2006 May 25; 18(1):170-5. PubMed ID: 20050568 [Abstract] [Full Text] [Related]
17. Precipitation of heavy metals from coal ash leachate using biogenic hydrogen sulfide generated from FGD gypsum. Jayaranjan ML, Annachhatre AP. Water Sci Technol; 2013 May 25; 67(2):311-8. PubMed ID: 23168629 [Abstract] [Full Text] [Related]
18. Mercury vapor pressure of flue gas desulfurization scrubber suspensions: effects of pH level, gypsum, and iron. Schuetze J, Kunth D, Weissbach S, Koeser H. Environ Sci Technol; 2012 Mar 06; 46(5):3008-13. PubMed ID: 22324514 [Abstract] [Full Text] [Related]
19. The potential leaching and mobilization of trace elements from FGD-gypsum of a coal-fired power plant under water re-circulation conditions. Córdoba P, Castro I, Maroto-Valer M, Querol X. J Environ Sci (China); 2015 Jun 01; 32():72-80. PubMed ID: 26040733 [Abstract] [Full Text] [Related]
20. Experimental study of high-flow and low-expansion backfill material. Wang C, Wang C, Xiong Z, Wang Y, Han Y. PLoS One; 2020 Jun 01; 15(8):e0236718. PubMed ID: 32797052 [Abstract] [Full Text] [Related] Page: [Next] [New Search]