These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
156 related items for PubMed ID: 23224404
1. Evaluation of control mechanisms for Saccharomyces cerevisiae central metabolic reactions using metabolome data of eight single-gene deletion mutants. Shirai T, Matsuda F, Okamoto M, Kondo A. Appl Microbiol Biotechnol; 2013 Apr; 97(8):3569-77. PubMed ID: 23224404 [Abstract] [Full Text] [Related]
2. The integrated response of primary metabolites to gene deletions and the environment. Ewald JC, Matt T, Zamboni N. Mol Biosyst; 2013 Mar; 9(3):440-6. PubMed ID: 23340584 [Abstract] [Full Text] [Related]
3. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae. Sasaki H, Uemura H. Yeast; 2005 Jan 30; 22(2):111-27. PubMed ID: 15645478 [Abstract] [Full Text] [Related]
4. Changes in the metabolome of Saccharomyces cerevisiae associated with evolution in aerobic glucose-limited chemostats. Mashego MR, Jansen ML, Vinke JL, van Gulik WM, Heijnen JJ. FEMS Yeast Res; 2005 Feb 30; 5(4-5):419-30. PubMed ID: 15691747 [Abstract] [Full Text] [Related]
5. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. Cakir T, Kirdar B, Onsan ZI, Ulgen KO, Nielsen J. BMC Syst Biol; 2007 Mar 27; 1():18. PubMed ID: 17408508 [Abstract] [Full Text] [Related]
6. Differential glucose repression in common yeast strains in response to HXK2 deletion. Kümmel A, Ewald JC, Fendt SM, Jol SJ, Picotti P, Aebersold R, Sauer U, Zamboni N, Heinemann M. FEMS Yeast Res; 2010 May 27; 10(3):322-32. PubMed ID: 20199578 [Abstract] [Full Text] [Related]
7. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose. Polish JA, Kim JH, Johnston M. Genetics; 2005 Feb 27; 169(2):583-94. PubMed ID: 15489524 [Abstract] [Full Text] [Related]
8. The Saccharomyces cerevisiae enolase-related regions encode proteins that are active enolases. Kornblatt MJ, Richard Albert J, Mattie S, Zakaib J, Dayanandan S, Hanic-Joyce PJ, Joyce PB. Yeast; 2013 Feb 27; 30(2):55-69. PubMed ID: 23359425 [Abstract] [Full Text] [Related]
9. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production. Xu G, Hua Q, Duan N, Liu L, Chen J. Yeast; 2012 Jun 27; 29(6):209-17. PubMed ID: 22674684 [Abstract] [Full Text] [Related]
10. A novel mechanism regulates H(2) S and SO(2) production in Saccharomyces cerevisiae. Yoshida S, Imoto J, Minato T, Oouchi R, Kamada Y, Tomita M, Soga T, Yoshimoto H. Yeast; 2011 Feb 27; 28(2):109-21. PubMed ID: 20936605 [Abstract] [Full Text] [Related]
11. Integration of metabolome data with metabolic networks reveals reporter reactions. Cakir T, Patil KR, Onsan Zi, Ulgen KO, Kirdar B, Nielsen J. Mol Syst Biol; 2006 Feb 27; 2():50. PubMed ID: 17016516 [Abstract] [Full Text] [Related]
12. Transcriptional regulatory networks in Saccharomyces cerevisiae. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA. Science; 2002 Oct 25; 298(5594):799-804. PubMed ID: 12399584 [Abstract] [Full Text] [Related]
13. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. Wiebe MG, Rintala E, Tamminen A, Simolin H, Salusjärvi L, Toivari M, Kokkonen JT, Kiuru J, Ketola RA, Jouhten P, Huuskonen A, Maaheimo H, Ruohonen L, Penttilä M. FEMS Yeast Res; 2008 Feb 25; 8(1):140-54. PubMed ID: 17425669 [Abstract] [Full Text] [Related]
14. Construction of a metabolome library for transcription factor-related single gene mutants of Saccharomyces cerevisiae. Hashim Z, Teoh ST, Bamba T, Fukusaki E. J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Sep 01; 966():83-92. PubMed ID: 24974314 [Abstract] [Full Text] [Related]
15. A potential role of the cytoskeleton of Saccharomyces cerevisiae in a functional organization of glycolytic enzymes. Götz R, Schlüter E, Shoham G, Zimmermann FK. Yeast; 1999 Nov 01; 15(15):1619-29. PubMed ID: 10572259 [Abstract] [Full Text] [Related]
16. Transcription factor Stb5p is essential for acetaldehyde tolerance in Saccharomyces cerevisiae. Matsufuji Y, Nakagawa T, Fujimura S, Tani A, Nakagawa J. J Basic Microbiol; 2010 Oct 01; 50(5):494-8. PubMed ID: 20806246 [Abstract] [Full Text] [Related]
17. Long-term adaptation of Saccharomyces cerevisiae to the burden of recombinant insulin production. Kazemi Seresht A, Cruz AL, de Hulster E, Hebly M, Palmqvist EA, van Gulik W, Daran JM, Pronk J, Olsson L. Biotechnol Bioeng; 2013 Oct 01; 110(10):2749-63. PubMed ID: 23568816 [Abstract] [Full Text] [Related]
18. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Lee KS, Hong ME, Jung SC, Ha SJ, Yu BJ, Koo HM, Park SM, Seo JH, Kweon DH, Park JC, Jin YS. Biotechnol Bioeng; 2011 Mar 01; 108(3):621-31. PubMed ID: 21246509 [Abstract] [Full Text] [Related]
19. Large-scale functional analysis of the roles of phosphorylation in yeast metabolic pathways. Schulz JC, Zampieri M, Wanka S, von Mering C, Sauer U. Sci Signal; 2014 Nov 25; 7(353):rs6. PubMed ID: 25429078 [Abstract] [Full Text] [Related]
20. Glucose repression of PRX1 expression is mediated by Tor1p and Ras2p through inhibition of Msn2/4p in Saccharomyces cerevisiae. Monteiro G, Netto LE. FEMS Microbiol Lett; 2004 Dec 15; 241(2):221-8. PubMed ID: 15598536 [Abstract] [Full Text] [Related] Page: [Next] [New Search]