These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


156 related items for PubMed ID: 23224404

  • 21. Saccharomyces cerevisiae gene YMR291W/TDA1 mediates the in vivo phosphorylation of hexokinase isoenzyme 2 at serine-15.
    Kettner K, Krause U, Mosler S, Bodenstein C, Kriegel TM, Rödel G.
    FEBS Lett; 2012 Feb 17; 586(4):455-8. PubMed ID: 22289182
    [Abstract] [Full Text] [Related]

  • 22. Integrated analysis of the yeast NADPH-regulator Stb5 reveals distinct differences in NADPH requirements and regulation in different states of yeast metabolism.
    Ouyang L, Holland P, Lu H, Bergenholm D, Nielsen J.
    FEMS Yeast Res; 2018 Dec 01; 18(8):. PubMed ID: 30107458
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Transcriptional and metabolic response in yeast Saccharomyces cerevisiae cells during polyethylene glycol-dependent transformation.
    Kawai S, Phan TA, Kono E, Harada K, Okai C, Fukusaki E, Murata K.
    J Basic Microbiol; 2009 Feb 01; 49(1):73-81. PubMed ID: 18798174
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Short- and long-term dynamic responses of the metabolic network and gene expression in yeast to a transient change in the nutrient environment.
    Dikicioglu D, Dunn WB, Kell DB, Kirdar B, Oliver SG.
    Mol Biosyst; 2012 Jun 01; 8(6):1760-74. PubMed ID: 22491778
    [Abstract] [Full Text] [Related]

  • 29. Swi/SNF-GCN5-dependent chromatin remodelling determines induced expression of GDH3, one of the paralogous genes responsible for ammonium assimilation and glutamate biosynthesis in Saccharomyces cerevisiae.
    Avendaño A, Riego L, DeLuna A, Aranda C, Romero G, Ishida C, Vázquez-Acevedo M, Rodarte B, Recillas-Targa F, Valenzuela L, Zonszein S, González A.
    Mol Microbiol; 2005 Jul 01; 57(1):291-305. PubMed ID: 15948967
    [Abstract] [Full Text] [Related]

  • 30. Expression of GCR1, the transcriptional activator of glycolytic enzyme genes in the yeast Saccharomyces cerevisiae, is positively autoregulated by Gcr1p.
    Sasaki H, Kishimoto T, Mizuno T, Shinzato T, Uemura H.
    Yeast; 2005 Mar 01; 22(4):305-19. PubMed ID: 15789351
    [Abstract] [Full Text] [Related]

  • 31. [Effect of the pho85 mutation on the catabolite repression of the CIT1 gene in yeasts Saccharomyces cerevisiae].
    Padkina MV, Tarasov SA, Karsten SL, Parfenova LV, Popova IuG, Sambuk EV.
    Genetika; 2003 Jun 01; 39(6):732-8. PubMed ID: 12884510
    [Abstract] [Full Text] [Related]

  • 32. The function and properties of the Azf1 transcriptional regulator change with growth conditions in Saccharomyces cerevisiae.
    Slattery MG, Liko D, Heideman W.
    Eukaryot Cell; 2006 Feb 01; 5(2):313-20. PubMed ID: 16467472
    [Abstract] [Full Text] [Related]

  • 33. Targeted proteome analysis of single-gene deletion strains of Saccharomyces cerevisiae lacking enzymes in the central carbon metabolism.
    Matsuda F, Kinoshita S, Nishino S, Tomita A, Shimizu H.
    PLoS One; 2017 Feb 01; 12(2):e0172742. PubMed ID: 28241048
    [Abstract] [Full Text] [Related]

  • 34. TCA cycle-independent acetate metabolism via the glyoxylate cycle in Saccharomyces cerevisiae.
    Lee YJ, Jang JW, Kim KJ, Maeng PJ.
    Yeast; 2011 Feb 01; 28(2):153-66. PubMed ID: 21246628
    [Abstract] [Full Text] [Related]

  • 35. Metabolome dynamic responses of Saccharomyces cerevisiae to simultaneous rapid perturbations in external electron acceptor and electron donor.
    Mashego MR, van Gulik WM, Heijnen JJ.
    FEMS Yeast Res; 2007 Jan 01; 7(1):48-66. PubMed ID: 17311584
    [Abstract] [Full Text] [Related]

  • 36. Physiological and transcriptional characterization of Saccharomyces cerevisiae strains with modified expression of catabolic regulators.
    Schuurmans JM, Boorsma A, Lascaris R, Hellingwerf KJ, Teixeira de Mattos MJ.
    FEMS Yeast Res; 2008 Feb 01; 8(1):26-34. PubMed ID: 17892474
    [Abstract] [Full Text] [Related]

  • 37. Controlling Central Carbon Metabolism for Improved Pathway Yields in Saccharomyces cerevisiae.
    Tan SZ, Manchester S, Prather KL.
    ACS Synth Biol; 2016 Feb 19; 5(2):116-24. PubMed ID: 26544022
    [Abstract] [Full Text] [Related]

  • 38. Mapping condition-dependent regulation of lipid metabolism in Saccharomyces cerevisiae.
    Jewett MC, Workman CT, Nookaew I, Pizarro FA, Agosin E, Hellgren LI, Nielsen J.
    G3 (Bethesda); 2013 Nov 06; 3(11):1979-95. PubMed ID: 24062529
    [Abstract] [Full Text] [Related]

  • 39. Glucose metabolism in gcr mutants of Saccharomyces cerevisiae.
    Uemura H, Fraenkel DG.
    J Bacteriol; 1999 Aug 06; 181(15):4719-23. PubMed ID: 10419980
    [Abstract] [Full Text] [Related]

  • 40. The molecular basis of metabolic cycles and their relationship to circadian rhythms.
    Mellor J.
    Nat Struct Mol Biol; 2016 Dec 06; 23(12):1035-1044. PubMed ID: 27922609
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.