These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 23224993

  • 1. Distinct sites of renal fibrosis in Crim1 mutant mice arise from multiple cellular origins.
    Phua YL, Martel N, Pennisi DJ, Little MH, Wilkinson L.
    J Pathol; 2013 Apr; 229(5):685-96. PubMed ID: 23224993
    [Abstract] [Full Text] [Related]

  • 2. Crim1KST264/KST264 mice implicate Crim1 in the regulation of vascular endothelial growth factor-A activity during glomerular vascular development.
    Wilkinson L, Gilbert T, Kinna G, Ruta LA, Pennisi D, Kett M, Little MH.
    J Am Soc Nephrol; 2007 Jun; 18(6):1697-708. PubMed ID: 17460146
    [Abstract] [Full Text] [Related]

  • 3. Association between congenital defects in papillary outgrowth and functional obstruction in Crim1 mutant mice.
    Wilkinson L, Kurniawan ND, Phua YL, Nguyen MJ, Li J, Galloway GJ, Hashitani H, Lang RJ, Little MH.
    J Pathol; 2012 Aug; 227(4):499-510. PubMed ID: 22488641
    [Abstract] [Full Text] [Related]

  • 4. Loss of renal microvascular integrity in postnatal Crim1 hypomorphic transgenic mice.
    Wilkinson L, Gilbert T, Sipos A, Toma I, Pennisi DJ, Peti-Peterdi J, Little MH.
    Kidney Int; 2009 Dec; 76(11):1161-71. PubMed ID: 19776720
    [Abstract] [Full Text] [Related]

  • 5. Crim1KST264/KST264 mice display a disruption of the Crim1 gene resulting in perinatal lethality with defects in multiple organ systems.
    Pennisi DJ, Wilkinson L, Kolle G, Sohaskey ML, Gillinder K, Piper MJ, McAvoy JW, Lovicu FJ, Little MH.
    Dev Dyn; 2007 Feb; 236(2):502-11. PubMed ID: 17106887
    [Abstract] [Full Text] [Related]

  • 6. Crim1 has an essential role in glycogen trophoblast cell and sinusoidal-trophoblast giant cell development in the placenta.
    Pennisi DJ, Kinna G, Chiu HS, Simmons DG, Wilkinson L, Little MH.
    Placenta; 2012 Mar; 33(3):175-82. PubMed ID: 22225908
    [Abstract] [Full Text] [Related]

  • 7. Endothelial dysfunction is a superinducer of syndecan-4: fibrogenic role of its ectodomain.
    Lipphardt M, Song JW, Ratliff BB, Dihazi H, Müller GA, Goligorsky MS.
    Am J Physiol Heart Circ Physiol; 2018 Mar 01; 314(3):H484-H496. PubMed ID: 29101181
    [Abstract] [Full Text] [Related]

  • 8. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition.
    Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R.
    J Am Soc Nephrol; 2008 Dec 01; 19(12):2282-7. PubMed ID: 18987304
    [Abstract] [Full Text] [Related]

  • 9. The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis.
    Sun YB, Qu X, Caruana G, Li J.
    Differentiation; 2016 Sep 01; 92(3):102-107. PubMed ID: 27262400
    [Abstract] [Full Text] [Related]

  • 10. Neonatal vascularization and oxygen tension regulate appropriate perinatal renal medulla/papilla maturation.
    Phua YL, Gilbert T, Combes A, Wilkinson L, Little MH.
    J Pathol; 2016 Apr 01; 238(5):665-76. PubMed ID: 26800422
    [Abstract] [Full Text] [Related]

  • 11. Production of a mouse line with a conditional Crim1 mutant allele.
    Chiu HS, York JP, Wilkinson L, Zhang P, Little MH, Pennisi DJ.
    Genesis; 2012 Sep 01; 50(9):711-6. PubMed ID: 22511315
    [Abstract] [Full Text] [Related]

  • 12. Crim1 maintains retinal vascular stability during development by regulating endothelial cell Vegfa autocrine signaling.
    Fan J, Ponferrada VG, Sato T, Vemaraju S, Fruttiger M, Gerhardt H, Ferrara N, Lang RA.
    Development; 2014 Jan 01; 141(2):448-59. PubMed ID: 24353059
    [Abstract] [Full Text] [Related]

  • 13. Novel insights into pericyte-myofibroblast transition and therapeutic targets in renal fibrosis.
    Chang FC, Chou YH, Chen YT, Lin SL.
    J Formos Med Assoc; 2012 Nov 01; 111(11):589-98. PubMed ID: 23217594
    [Abstract] [Full Text] [Related]

  • 14. Origin and function of myofibroblasts in kidney fibrosis.
    LeBleu VS, Taduri G, O'Connell J, Teng Y, Cooke VG, Woda C, Sugimoto H, Kalluri R.
    Nat Med; 2013 Aug 01; 19(8):1047-53. PubMed ID: 23817022
    [Abstract] [Full Text] [Related]

  • 15. Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis.
    Meng XM, Wang S, Huang XR, Yang C, Xiao J, Zhang Y, To KF, Nikolic-Paterson DJ, Lan HY.
    Cell Death Dis; 2016 Dec 01; 7(12):e2495. PubMed ID: 27906172
    [Abstract] [Full Text] [Related]

  • 16. CRIM1 is necessary for coronary vascular endothelial cell development and homeostasis.
    Iyer S, Chhabra Y, Harvey TJ, Wang R, Chiu HS, Smith AG, Thomas WG, Pennisi DJ, Piper M.
    J Mol Histol; 2017 Feb 01; 48(1):53-61. PubMed ID: 27803996
    [Abstract] [Full Text] [Related]

  • 17. Mechanism of Fibrosis in HNF1B-Related Autosomal Dominant Tubulointerstitial Kidney Disease.
    Chan SC, Zhang Y, Shao A, Avdulov S, Herrera J, Aboudehen K, Pontoglio M, Igarashi P.
    J Am Soc Nephrol; 2018 Oct 01; 29(10):2493-2509. PubMed ID: 30097458
    [Abstract] [Full Text] [Related]

  • 18. Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease.
    He J, Xu Y, Koya D, Kanasaki K.
    Clin Exp Nephrol; 2013 Aug 01; 17(4):488-97. PubMed ID: 23430391
    [Abstract] [Full Text] [Related]

  • 19. Fibrocytes develop outside the kidney but contribute to renal fibrosis in a mouse model.
    Reich B, Schmidbauer K, Rodriguez Gomez M, Johannes Hermann F, Göbel N, Brühl H, Ketelsen I, Talke Y, Mack M.
    Kidney Int; 2013 Jul 01; 84(1):78-89. PubMed ID: 23486523
    [Abstract] [Full Text] [Related]

  • 20. Endothelial sirtuin 1 inactivation enhances capillary rarefaction and fibrosis following kidney injury through Notch activation.
    Kida Y, Zullo JA, Goligorsky MS.
    Biochem Biophys Res Commun; 2016 Sep 23; 478(3):1074-9. PubMed ID: 27524235
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.