These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


154 related items for PubMed ID: 23225538

  • 1. A core-shell albumin copolymer nanotransporter for high capacity loading and two-step release of doxorubicin with enhanced anti-leukemia activity.
    Wu Y, Ihme S, Feuring-Buske M, Kuan SL, Eisele K, Lamla M, Wang Y, Buske C, Weil T.
    Adv Healthc Mater; 2013 Jun; 2(6):884-94. PubMed ID: 23225538
    [Abstract] [Full Text] [Related]

  • 2. Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis.
    Yu C, Zhou M, Zhang X, Wei W, Chen X, Zhang X.
    Nanoscale; 2015 Mar 19; 7(13):5683-90. PubMed ID: 25740312
    [Abstract] [Full Text] [Related]

  • 3. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) with varying compositions.
    Liu SQ, Tong YW, Yang YY.
    Biomaterials; 2005 Aug 19; 26(24):5064-74. PubMed ID: 15769542
    [Abstract] [Full Text] [Related]

  • 4. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron-doxorubicin conjugates for cancer therapy.
    She W, Luo K, Zhang C, Wang G, Geng Y, Li L, He B, Gu Z.
    Biomaterials; 2013 Feb 19; 34(5):1613-23. PubMed ID: 23195490
    [Abstract] [Full Text] [Related]

  • 5. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles.
    Gao Y, Chen Y, Ji X, He X, Yin Q, Zhang Z, Shi J, Li Y.
    ACS Nano; 2011 Dec 27; 5(12):9788-98. PubMed ID: 22070571
    [Abstract] [Full Text] [Related]

  • 6. Amphiphilic polyelectrolyte/prodrug nanoparticles constructed by synergetic electrostatic and hydrophobic interactions with cooperative pH-sensitivity for controlled doxorubicin delivery.
    Huang P, Wang W, Zhou J, Zhao F, Zhang Y, Liu J, Liu J, Dong A, Kong D, Zhang J.
    ACS Appl Mater Interfaces; 2015 Mar 25; 7(11):6340-50. PubMed ID: 25746122
    [Abstract] [Full Text] [Related]

  • 7. A novel delivery system of doxorubicin with high load and pH-responsive release from the nanoparticles of poly (α,β-aspartic acid) derivative.
    Wang X, Wu G, Lu C, Zhao W, Wang Y, Fan Y, Gao H, Ma J.
    Eur J Pharm Sci; 2012 Aug 30; 47(1):256-64. PubMed ID: 22522116
    [Abstract] [Full Text] [Related]

  • 8. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram.
    Duan X, Xiao J, Yin Q, Zhang Z, Yu H, Mao S, Li Y.
    ACS Nano; 2013 Jul 23; 7(7):5858-69. PubMed ID: 23734880
    [Abstract] [Full Text] [Related]

  • 9. Hybrid lipid-capped mesoporous silica for stimuli-responsive drug release and overcoming multidrug resistance.
    Han N, Zhao Q, Wan L, Wang Y, Gao Y, Wang P, Wang Z, Zhang J, Jiang T, Wang S.
    ACS Appl Mater Interfaces; 2015 Feb 11; 7(5):3342-51. PubMed ID: 25584634
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. The therapeutic response to multifunctional polymeric nano-conjugates in the targeted cellular and subcellular delivery of doxorubicin.
    Xiong XB, Ma Z, Lai R, Lavasanifar A.
    Biomaterials; 2010 Feb 11; 31(4):757-68. PubMed ID: 19818492
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin.
    Talelli M, Iman M, Varkouhi AK, Rijcken CJ, Schiffelers RM, Etrych T, Ulbrich K, van Nostrum CF, Lammers T, Storm G, Hennink WE.
    Biomaterials; 2010 Oct 11; 31(30):7797-804. PubMed ID: 20673684
    [Abstract] [Full Text] [Related]

  • 14. Carboxylated poly(glycerol methacrylate)s for doxorubicin delivery.
    Ma Y, Gao H, Gu W, Yang YW, Wang Y, Fan Y, Wu G, Ma J.
    Eur J Pharm Sci; 2012 Jan 23; 45(1-2):65-72. PubMed ID: 22085680
    [Abstract] [Full Text] [Related]

  • 15. Glutathione- and pH-responsive nonporous silica prodrug nanoparticles for controlled release and cancer therapy.
    Xu Z, Liu S, Kang Y, Wang M.
    Nanoscale; 2015 Mar 19; 7(13):5859-68. PubMed ID: 25757484
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. pH-Responsive Nanoscale Coordination Polymer for Efficient Drug Delivery and Real-Time Release Monitoring.
    Han K, Zhang WY, Zhang J, Ma ZY, Han HY.
    Adv Healthc Mater; 2017 Oct 19; 6(19):. PubMed ID: 28714280
    [Abstract] [Full Text] [Related]

  • 18. A novel protein-based anticancer drug encapsulating nanosphere: apoferritin-doxorubicin complex.
    Kilic MA, Ozlu E, Calis S.
    J Biomed Nanotechnol; 2012 Jun 19; 8(3):508-14. PubMed ID: 22764421
    [Abstract] [Full Text] [Related]

  • 19. Hollow core-porous shell structure poly(acrylic acid) nanogels with a superhigh capacity of drug loading.
    Chen Y, Zheng X, Qian H, Mao Z, Ding D, Jiang X.
    ACS Appl Mater Interfaces; 2010 Dec 19; 2(12):3532-8. PubMed ID: 21080640
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.