These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


77 related items for PubMed ID: 23231116

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42. The use of QSD (q-sequence deconvolution) to recover superposed, transient evoked-responses.
    Jewett DL, Caplovitz G, Baird B, Trumpis M, Olson MP, Larson-Prior LJ.
    Clin Neurophysiol; 2004 Dec; 115(12):2754-75. PubMed ID: 15546784
    [Abstract] [Full Text] [Related]

  • 43. Comparison of Auditory Middle-Latency Responses From Two Deconvolution Methods at 40 Hz.
    Tan XD, Peng X, Zhan CA, Wang T.
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1157-66. PubMed ID: 26441440
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46. ABR-Attention: An Attention-Based Model for Precisely Localizing Auditory Brainstem Response.
    Ji J, Wang X, Jing X, Zhu M, Pan H, Jia D, Zhao C, Yong X, Xu Y, Zhao G, Sun PZH, Li G, Chen S.
    IEEE Trans Neural Syst Rehabil Eng; 2024 Jun; 32():3179-3188. PubMed ID: 39159023
    [Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48. A preliminary investigation of the deconvolution of auditory evoked potentials using a session jittering paradigm.
    Wang T, Zhan C, Yan G, Bohórquez J, Özdamar Ö.
    J Neural Eng; 2013 Apr; 10(2):026023. PubMed ID: 23528676
    [Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50. Signal-to-noise ratio and frequency analysis of continuous loop averaging deconvolution (CLAD) of overlapping evoked potentials.
    Ozdamar O, Bohórquez J.
    J Acoust Soc Am; 2006 Jan; 119(1):429-38. PubMed ID: 16454297
    [Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52. Fundamental frequency predominantly drives talker differences in auditory brainstem responses to continuous speech.
    Polonenko MJ, Maddox RK.
    JASA Express Lett; 2024 Nov 01; 4(11):. PubMed ID: 39504231
    [Abstract] [Full Text] [Related]

  • 53. Fundamental frequency predominantly drives talker differences in auditory brainstem responses to continuous speech.
    Polonenko MJ, Maddox RK.
    bioRxiv; 2024 Jul 13. PubMed ID: 39026858
    [Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55. Optimizing Auditory Brainstem Response Acquisition Using Interleaved Frequencies.
    Buran BN, Elkins S, Kempton JB, Porsov EV, Brigande JV, David SV.
    J Assoc Res Otolaryngol; 2020 Jun 13; 21(3):225-242. PubMed ID: 32648066
    [Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57. The Parallel Auditory Brainstem Response.
    Polonenko MJ, Maddox RK.
    Trends Hear; 2019 Jun 13; 23():2331216519871395. PubMed ID: 31516096
    [Abstract] [Full Text] [Related]

  • 58. The effects of click rate on the auditory brainstem response of bottlenose dolphins.
    Burkard RF, Finneran JJ, Mulsow J.
    J Acoust Soc Am; 2017 May 13; 141(5):3396. PubMed ID: 28599539
    [Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 4.