These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
177 related items for PubMed ID: 23236517
1. Interactive effects of ocean acidification and nitrogen-limitation on the diatom Phaeodactylum tricornutum. Li W, Gao K, Beardall J. PLoS One; 2012; 7(12):e51590. PubMed ID: 23236517 [Abstract] [Full Text] [Related]
2. Physiological responses of the marine diatom Thalassiosira pseudonana to increased pCO2 and seawater acidity. Yang G, Gao K. Mar Environ Res; 2012 Aug; 79():142-51. PubMed ID: 22770534 [Abstract] [Full Text] [Related]
3. Influence of ocean acidification on thermal reaction norms of carbon metabolism in the marine diatom Phaeodactylum tricornutum. Tong S, Xu D, Wang Y, Zhang X, Li Y, Wu H, Ye N. Mar Environ Res; 2021 Feb; 164():105233. PubMed ID: 33310685 [Abstract] [Full Text] [Related]
6. The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO2 and pH. Shi D, Hong H, Su X, Liao L, Chang S, Lin W. J Phycol; 2019 Jun; 55(3):521-533. PubMed ID: 30849184 [Abstract] [Full Text] [Related]
7. Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO2 over 1800 generations. Li F, Beardall J, Collins S, Gao K. Glob Chang Biol; 2017 Jan; 23(1):127-137. PubMed ID: 27629864 [Abstract] [Full Text] [Related]
8. Enhanced biological carbon consumption in a high CO2 ocean. Riebesell U, Schulz KG, Bellerby RG, Botros M, Fritsche P, Meyerhöfer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zöllner E. Nature; 2007 Nov 22; 450(7169):545-8. PubMed ID: 17994008 [Abstract] [Full Text] [Related]
9. Provision of carbon skeleton for lipid synthesis from the breakdown of intracellular protein and soluble sugar in Phaeodactylum tricornutum under high CO2. Huang A, Wu S, Gu W, Li Y, Xie X, Wang G. BMC Biotechnol; 2019 Jul 26; 19(1):53. PubMed ID: 31349823 [Abstract] [Full Text] [Related]
11. Effects and mechanisms of glyphosate as phosphorus nutrient on element stoichiometry and metabolism in the diatom Phaeodactylum tricornutum. Wang C, Li J, Li S, Lin S. Appl Environ Microbiol; 2024 Feb 21; 90(2):e0213123. PubMed ID: 38265214 [Abstract] [Full Text] [Related]
13. Combined effects of CO2-driven ocean acidification and Cd stress in the marine environment: Enhanced tolerance of Phaeodactylum tricornutum to Cd exposure. Dong F, Zhu X, Qian W, Wang P, Wang J. Mar Pollut Bull; 2020 Jan 21; 150():110594. PubMed ID: 31727316 [Abstract] [Full Text] [Related]
15. Influence of nutrient status on the response of the diatom Phaeodactylum tricornutum to oil and dispersant. Kamalanathan M, Hillhouse J, Claflin N, Rodkey T, Mondragon A, Prouse A, Nguyen M, Quigg A. PLoS One; 2021 Jan 21; 16(12):e0259506. PubMed ID: 34851969 [Abstract] [Full Text] [Related]
17. Short-term elevated CO2 exposure stimulated photochemical performance of a coastal marine diatom. Wu Y, Campbell DA, Gao K. Mar Environ Res; 2017 Apr 21; 125():42-48. PubMed ID: 28126512 [Abstract] [Full Text] [Related]
19. Ocean acidification interacts with growth light to suppress CO2 acquisition efficiency and enhance mitochondrial respiration in a coastal diatom. Qu L, Campbell DA, Gao K. Mar Pollut Bull; 2021 Feb 21; 163():112008. PubMed ID: 33461076 [Abstract] [Full Text] [Related]