These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


150 related items for PubMed ID: 2323898

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. [The hematocrit in the conical capillaries of skeletal muscle].
    Golub' AS, Malkina NA.
    Fiziol Zh SSSR Im I M Sechenova; 1988 Apr; 74(4):525-32. PubMed ID: 3396715
    [Abstract] [Full Text] [Related]

  • 23. Changes in the microcirculation in slow and fast skeletal muscles with long term limitations of blood supply.
    Dawson JM, Hudlicka O.
    Cardiovasc Res; 1990 May; 24(5):390-5. PubMed ID: 2372794
    [Abstract] [Full Text] [Related]

  • 24. Red cell perfusion in skeletal muscle at rest and after mild and severe contractions.
    Tyml K.
    Am J Physiol; 1987 Mar; 252(3 Pt 2):H485-93. PubMed ID: 3493707
    [Abstract] [Full Text] [Related]

  • 25. A comparison of microvascular estimates of capillary blood flow with direct measurements of total striated muscle flow.
    Duling BR, Sarelius IH, Jackson WF.
    Int J Microcirc Clin Exp; 1982 Mar; 1(4):409-24. PubMed ID: 6765284
    [Abstract] [Full Text] [Related]

  • 26. Capillary lengths, anastomoses, and estimated capillary transit times in skeletal muscle.
    Honig CR, Feldstein ML, Frierson JL.
    Am J Physiol; 1977 Jul; 233(1):H122-9. PubMed ID: 879328
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Skeletal muscle capillary hemodynamics from rest to contractions: implications for oxygen transfer.
    Kindig CA, Richardson TE, Poole DC.
    J Appl Physiol (1985); 2002 Jun; 92(6):2513-20. PubMed ID: 12015367
    [Abstract] [Full Text] [Related]

  • 29. Occurrence of the "capillary contractility" phenomenon and its significance in the distribution of microvascular flow in frog skeletal muscle.
    Tyml K, Weigelt H, Lübbers DW.
    Microvasc Res; 1984 Mar; 27(2):135-51. PubMed ID: 6608659
    [Abstract] [Full Text] [Related]

  • 30. Shear rate dependency of red cell sequestration in skin capillaries in sickle cell disease and its variation with vasoocclusive crisis.
    Lipowsky HH, Williams ME.
    Microcirculation; 1997 Jun; 4(2):289-301. PubMed ID: 9219221
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Evidence for increased perfusion heterogeneity in skeletal muscle during reduced flow.
    Tyml K, Mikulash K.
    Microvasc Res; 1988 May; 35(3):316-24. PubMed ID: 3260655
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Temporal and spatial distributions of red cell velocity in capillaries of resting skeletal muscle, including estimates of red cell transit times.
    Tyml K, Ellis CG, Safranyos RG, Fraser S, Groom AC.
    Microvasc Res; 1981 Jul; 22(1):14-31. PubMed ID: 6974295
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Measurement of RBC deformation and velocity in capillaries in vivo.
    Jeong JH, Sugii Y, Minamiyama M, Okamoto K.
    Microvasc Res; 2006 May; 71(3):212-7. PubMed ID: 16624342
    [Abstract] [Full Text] [Related]

  • 40. Microvascular blood flow distribution in skeletal muscle. An intravital microscopic study in the rabbit.
    Lindbom L.
    Acta Physiol Scand Suppl; 1983 May; 525():1-40. PubMed ID: 6588730
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.