These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


204 related items for PubMed ID: 23239633

  • 1. Enzyme-catalyzed crosslinking in a partly frozen state: a new way to produce supermacroporous protein structures.
    Kirsebom H, Elowsson L, Berillo D, Cozzi S, Inci I, Piskin E, Galaev IY, Mattiasson B.
    Macromol Biosci; 2013 Jan; 13(1):67-76. PubMed ID: 23239633
    [Abstract] [Full Text] [Related]

  • 2. Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: in vitro and in vivo studies.
    Chang KH, Liao HT, Chen JP.
    Acta Biomater; 2013 Nov; 9(11):9012-26. PubMed ID: 23851171
    [Abstract] [Full Text] [Related]

  • 3. Oxidized dextran as crosslinker for chitosan cryogel scaffolds and formation of polyelectrolyte complexes between chitosan and gelatin.
    Berillo D, Elowsson L, Kirsebom H.
    Macromol Biosci; 2012 Aug; 12(8):1090-9. PubMed ID: 22674878
    [Abstract] [Full Text] [Related]

  • 4. Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility.
    Kemençe N, Bölgen N.
    J Tissue Eng Regen Med; 2017 Jan; 11(1):20-33. PubMed ID: 23997022
    [Abstract] [Full Text] [Related]

  • 5. Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering.
    Kathuria N, Tripathi A, Kar KK, Kumar A.
    Acta Biomater; 2009 Jan; 5(1):406-18. PubMed ID: 18701361
    [Abstract] [Full Text] [Related]

  • 6. Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells.
    Singh D, Zo SM, Kumar A, Han SS.
    J Biomater Sci Polym Ed; 2013 Jan; 24(11):1343-59. PubMed ID: 23796035
    [Abstract] [Full Text] [Related]

  • 7. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications.
    Sharma A, Bhat S, Nayak V, Kumar A.
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():298-312. PubMed ID: 25492201
    [Abstract] [Full Text] [Related]

  • 8. Tunable hybrid cryogels functionalized with microparticles as supermacroporous multifunctional biomaterial scaffolds.
    Sami H, Kumar A.
    J Biomater Sci Polym Ed; 2013 Feb; 24(10):1165-84. PubMed ID: 23713421
    [Abstract] [Full Text] [Related]

  • 9. Macroporous starPEG-heparin cryogels.
    Welzel PB, Grimmer M, Renneberg C, Naujox L, Zschoche S, Freudenberg U, Werner C.
    Biomacromolecules; 2012 Aug 13; 13(8):2349-58. PubMed ID: 22758219
    [Abstract] [Full Text] [Related]

  • 10. Synthesis and characterization of a temperature-responsive biocompatible poly(N-vinylcaprolactam) cryogel: a step towards designing a novel cell scaffold.
    Srivastava A, Kumar A.
    J Biomater Sci Polym Ed; 2009 Aug 13; 20(10):1393-415. PubMed ID: 19622279
    [Abstract] [Full Text] [Related]

  • 11. Modulated crosslinking of macroporous polymeric cryogel affects in vitro cell adhesion and growth.
    Tripathi A, Vishnoi T, Singh D, Kumar A.
    Macromol Biosci; 2013 Jul 13; 13(7):838-50. PubMed ID: 23650251
    [Abstract] [Full Text] [Related]

  • 12. Three-dimensional supermacroporous carrageenan-gelatin cryogel matrix for tissue engineering applications.
    Sharma A, Bhat S, Vishnoi T, Nayak V, Kumar A.
    Biomed Res Int; 2013 Jul 13; 2013():478279. PubMed ID: 23936806
    [Abstract] [Full Text] [Related]

  • 13. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering.
    Tripathi A, Kathuria N, Kumar A.
    J Biomed Mater Res A; 2009 Sep 01; 90(3):680-94. PubMed ID: 18563830
    [Abstract] [Full Text] [Related]

  • 14. Comparative study of gelatin cryogels reinforced with hydroxyapatites with different morphologies and interfacial bonding.
    Gu L, Zhang Y, Zhang L, Huang Y, Zuo D, Cai Q, Yang X.
    Biomed Mater; 2020 Mar 31; 15(3):035012. PubMed ID: 32031987
    [Abstract] [Full Text] [Related]

  • 15. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold.
    Poursamar SA, Lehner AN, Azami M, Ebrahimi-Barough S, Samadikuchaksaraei A, Antunes AP.
    Mater Sci Eng C Mater Biol Appl; 2016 Jun 31; 63():1-9. PubMed ID: 27040189
    [Abstract] [Full Text] [Related]

  • 16. Relationship between gelatin concentrations in silk fibroin-based composite scaffolds and adhesion and proliferation of mouse embryo fibroblasts.
    Orlova AA, Kotlyarova MS, Lavrenov VS, Volkova SV, Arkhipova AY.
    Bull Exp Biol Med; 2014 Nov 31; 158(1):88-91. PubMed ID: 25403405
    [Abstract] [Full Text] [Related]

  • 17. Bio-inspired fabrication of fibroin cryogels from the muga silkworm Antheraea assamensis for liver tissue engineering.
    Kundu B, Kundu SC.
    Biomed Mater; 2013 Oct 31; 8(5):055003. PubMed ID: 24002731
    [Abstract] [Full Text] [Related]

  • 18. Inorganic/organic biocomposite cryogels for regeneration of bony tissues.
    Mishra R, Kumar A.
    J Biomater Sci Polym Ed; 2011 Oct 31; 22(16):2107-26. PubMed ID: 21067655
    [Abstract] [Full Text] [Related]

  • 19. Redox-responsive degradable PEG cryogels as potential cell scaffolds in tissue engineering.
    Dispinar T, Van Camp W, De Cock LJ, De Geest BG, Du Prez FE.
    Macromol Biosci; 2012 Mar 31; 12(3):383-94. PubMed ID: 22223302
    [Abstract] [Full Text] [Related]

  • 20. Fabrication of gelatin-hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering.
    Zhang F, He C, Cao L, Feng W, Wang H, Mo X, Wang J.
    Int J Biol Macromol; 2011 Apr 01; 48(3):474-81. PubMed ID: 21255605
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.