These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
194 related items for PubMed ID: 23241386
1. High-throughput sequence analysis reveals structural diversity and improved potency among RNA inhibitors of HIV reverse transcriptase. Ditzler MA, Lange MJ, Bose D, Bottoms CA, Virkler KF, Sawyer AW, Whatley AS, Spollen W, Givan SA, Burke DH. Nucleic Acids Res; 2013 Feb 01; 41(3):1873-84. PubMed ID: 23241386 [Abstract] [Full Text] [Related]
2. Potent inhibition of human immunodeficiency virus type 1 replication by template analog reverse transcriptase inhibitors derived by SELEX (systematic evolution of ligands by exponential enrichment). Joshi P, Prasad VR. J Virol; 2002 Jul 01; 76(13):6545-57. PubMed ID: 12050367 [Abstract] [Full Text] [Related]
3. 2'-fluoro-modified pyrimidines enhance affinity of RNA oligonucleotides to HIV-1 reverse transcriptase. Gruenke PR, Alam KK, Singh K, Burke DH. RNA; 2020 Nov 01; 26(11):1667-1679. PubMed ID: 32732393 [Abstract] [Full Text] [Related]
4. Bent pseudoknots and novel RNA inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase. Burke DH, Scates L, Andrews K, Gold L. J Mol Biol; 1996 Dec 13; 264(4):650-66. PubMed ID: 8980676 [Abstract] [Full Text] [Related]
5. Selection of 2'-deoxy-2'-fluoroarabinonucleotide (FANA) aptamers that bind HIV-1 reverse transcriptase with picomolar affinity. Alves Ferreira-Bravo I, Cozens C, Holliger P, DeStefano JJ. Nucleic Acids Res; 2015 Nov 16; 43(20):9587-99. PubMed ID: 26476448 [Abstract] [Full Text] [Related]
6. Active site binding and sequence requirements for inhibition of HIV-1 reverse transcriptase by the RT1 family of single-stranded DNA aptamers. Kissel JD, Held DM, Hardy RW, Burke DH. Nucleic Acids Res; 2007 Nov 16; 35(15):5039-50. PubMed ID: 17644816 [Abstract] [Full Text] [Related]
7. Towards the selection of phosphorothioate aptamers optimizing in vitro selection steps with phosphorothioate nucleotides. Andreola ML, Calmels C, Michel J, Toulmé JJ, Litvak S. Eur J Biochem; 2000 Aug 16; 267(16):5032-40. PubMed ID: 10931185 [Abstract] [Full Text] [Related]
8. Characterization of New DNA Aptamers for Anti-HIV-1 Reverse Transcriptase. Ratanabunyong S, Aeksiri N, Yanaka S, Yagi-Utsumi M, Kato K, Choowongkomon K, Hannongbua S. Chembiochem; 2021 Mar 02; 22(5):915-923. PubMed ID: 33095511 [Abstract] [Full Text] [Related]
9. Screening of novel inhibitors of HIV-1 reverse transcriptase with a reporter ribozyme assay. Yamazaki S, Famulok M. Methods Mol Biol; 2009 Mar 02; 535():187-99. PubMed ID: 19377995 [Abstract] [Full Text] [Related]
10. DNA aptamers to human immunodeficiency virus reverse transcriptase selected by a primer-free SELEX method: characterization and comparison with other aptamers. Lai YT, DeStefano JJ. Nucleic Acid Ther; 2012 Jun 02; 22(3):162-76. PubMed ID: 22554064 [Abstract] [Full Text] [Related]
11. Novel aptamer inhibitors of human immunodeficiency virus reverse transcriptase. DeStefano JJ, Nair GR. Oligonucleotides; 2008 Jun 02; 18(2):133-44. PubMed ID: 18637731 [Abstract] [Full Text] [Related]
12. Broad-spectrum aptamer inhibitors of HIV reverse transcriptase closely mimic natural substrates. Ditzler MA, Bose D, Shkriabai N, Marchand B, Sarafianos SG, Kvaratskhelia M, Burke DH. Nucleic Acids Res; 2011 Oct 02; 39(18):8237-47. PubMed ID: 21727088 [Abstract] [Full Text] [Related]
13. RNA-protein interactions govern antiviral specificity and encapsidation of broad spectrum anti-HIV reverse transcriptase aptamers. Lange MJ, Nguyen PDM, Callaway MK, Johnson MC, Burke DH. Nucleic Acids Res; 2017 Jun 02; 45(10):6087-6097. PubMed ID: 28334941 [Abstract] [Full Text] [Related]
14. Combinatorial selection, inhibition, and antiviral activity of DNA thioaptamers targeting the RNase H domain of HIV-1 reverse transcriptase. Somasunderam A, Ferguson MR, Rojo DR, Thiviyanathan V, Li X, O'Brien WA, Gorenstein DG. Biochemistry; 2005 Aug 02; 44(30):10388-95. PubMed ID: 16042416 [Abstract] [Full Text] [Related]
15. Cross-clade inhibition of recombinant human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus SIVcpz reverse transcriptases by RNA pseudoknot aptamers. Held DM, Kissel JD, Thacker SJ, Michalowski D, Saran D, Ji J, Hardy RW, Rossi JJ, Burke DH. J Virol; 2007 May 02; 81(10):5375-84. PubMed ID: 17329328 [Abstract] [Full Text] [Related]
16. RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information. Ishida R, Adachi T, Yokota A, Yoshihara H, Aoki K, Nakamura Y, Hamada M. Nucleic Acids Res; 2020 Aug 20; 48(14):e82. PubMed ID: 32537639 [Abstract] [Full Text] [Related]
17. Inhibition of the DNA polymerase and RNase H activities of HIV-1 reverse transcriptase and HIV-1 replication by Brasenia schreberi (Junsai) and Petasites japonicus (Fuki) components. Hisayoshi T, Shinomura M, Yokokawa K, Kuze I, Konishi A, Kawaji K, Kodama EN, Hata K, Takahashi S, Nirasawa S, Sakuda S, Yasukawa K. J Nat Med; 2015 Jul 20; 69(3):432-40. PubMed ID: 25663480 [Abstract] [Full Text] [Related]
18. Anti-HIV/SIV activity of icariin and its metabolite anhydroicaritin mainly involve reverse transcriptase. Xie Y, Xie L, Chen A, Wu S, Mo Y, Guo X, Zeng C, Huang X, He J. Eur J Pharmacol; 2020 Oct 05; 884():173327. PubMed ID: 32726656 [Abstract] [Full Text] [Related]
19. Application of Structure-based Methods to Analyze Resistance Mutations for Chemically Diverse Non-Nucleoside Reverse Transcriptase Inhibitors. Tabassum T, Azeem SM, Muwonge AN, Frey KM. Curr HIV Res; 2020 Oct 05; 18(4):283-291. PubMed ID: 32493197 [Abstract] [Full Text] [Related]
20. HIV-1 integrase and RNase H activities as therapeutic targets. Andréola ML, De Soultrait VR, Fournier M, Parissi V, Desjobert C, Litvak S. Expert Opin Ther Targets; 2002 Aug 05; 6(4):433-46. PubMed ID: 12223059 [Abstract] [Full Text] [Related] Page: [Next] [New Search]