These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


687 related items for PubMed ID: 23245586

  • 1. Comparison of the sensitivity of different aroma extraction techniques in combination with gas chromatography-mass spectrometry to detect minor aroma compounds in wine.
    Gamero A, Wesselink W, de Jong C.
    J Chromatogr A; 2013 Jan 11; 1272():1-7. PubMed ID: 23245586
    [Abstract] [Full Text] [Related]

  • 2. Potentialities of two solventless extraction approaches--stir bar sorptive extraction and headspace solid-phase microextraction for determination of higher alcohol acetates, isoamyl esters and ethyl esters in wines.
    Perestrelo R, Nogueira JM, Câmara JS.
    Talanta; 2009 Dec 15; 80(2):622-30. PubMed ID: 19836529
    [Abstract] [Full Text] [Related]

  • 3. A comparison of sorptive extraction techniques coupled to a new quantitative, sensitive, high throughput GC-MS/MS method for methoxypyrazine analysis in wine.
    Hjelmeland AK, Wylie PL, Ebeler SE.
    Talanta; 2016 Feb 01; 148():336-45. PubMed ID: 26653458
    [Abstract] [Full Text] [Related]

  • 4. Characterization of the aroma profile of novel Brazilian wines by solid-phase microextraction using polymeric ionic liquid sorbent coatings.
    Crucello J, Miron LFO, Ferreira VHC, Nan H, Marques MOM, Ritschel PS, Zanus MC, Anderson JL, Poppi RJ, Hantao LW.
    Anal Bioanal Chem; 2018 Jul 01; 410(19):4749-4762. PubMed ID: 29806067
    [Abstract] [Full Text] [Related]

  • 5. Chemometrical development and comprehensive validation of a solid phase microextraction/gas chromatography-mass spectrometry methodology for the determination of important free and bound primary aromatics in Greek wines.
    Metafa M, Economou A.
    J Chromatogr A; 2013 Aug 30; 1305():244-58. PubMed ID: 23891382
    [Abstract] [Full Text] [Related]

  • 6. Optimization and application of headspace-solid-phase micro-extraction coupled with gas chromatography-mass spectrometry for the determination of volatile compounds in cherry wines.
    Xiao Z, Zhou X, Niu Y, Yu D, Zhu J, Zhu G.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jan 26; 978-979():122-30. PubMed ID: 25544009
    [Abstract] [Full Text] [Related]

  • 7. Headspace solid-phase microextraction-gas chromatography-mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines.
    Canuti V, Conversano M, Calzi ML, Heymann H, Matthews MA, Ebeler SE.
    J Chromatogr A; 2009 Apr 10; 1216(15):3012-22. PubMed ID: 19233370
    [Abstract] [Full Text] [Related]

  • 8. Development of a sensitive non-targeted method for characterizing the wine volatile profile using headspace solid-phase microextraction comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry.
    Robinson AL, Boss PK, Heymann H, Solomon PS, Trengove RD.
    J Chromatogr A; 2011 Jan 21; 1218(3):504-17. PubMed ID: 21185026
    [Abstract] [Full Text] [Related]

  • 9. Dual solid-phase and stir bar sorptive extraction combined with gas chromatography-mass spectrometry analysis provides a suitable tool for assaying limonene-derived mint aroma compounds in red wine.
    Picard M, Franc C, de Revel G, Marchand S.
    Anal Chim Acta; 2018 Feb 25; 1001():168-178. PubMed ID: 29291800
    [Abstract] [Full Text] [Related]

  • 10. Aroma characterization of chinese rice wine by gas chromatography-olfactometry, chemical quantitative analysis, and aroma reconstitution.
    Chen S, Xu Y, Qian MC.
    J Agric Food Chem; 2013 Nov 27; 61(47):11295-302. PubMed ID: 24099139
    [Abstract] [Full Text] [Related]

  • 11. Comparison of an Offline SPE-GC-MS and Online HS-SPME-GC-MS Method for the Analysis of Volatile Terpenoids in Wine.
    Williams C, Buica A.
    Molecules; 2020 Feb 04; 25(3):. PubMed ID: 32033055
    [Abstract] [Full Text] [Related]

  • 12. Characterization of aroma compounds in Chinese rice wine Qu by solvent-assisted flavor evaporation and headspace solid-phase microextraction.
    Mo X, Xu Y, Fan W.
    J Agric Food Chem; 2010 Feb 24; 58(4):2462-9. PubMed ID: 20088505
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Optimization of Headspace Solid-Phase Microextraction (HS-SPME) Parameters for the Analysis of Pyrazines in Yeast Extract via Gas Chromatography Mass Spectrometry (GC-MS).
    Raza A, Begum N, Song H, Li K, Li P.
    J Food Sci; 2019 Aug 24; 84(8):2031-2041. PubMed ID: 31276204
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Quantitative determination of α-ionone, β-ionone, and β-damascenone and enantiodifferentiation of α-ionone in wine for authenticity control using multidimensional gas chromatography with tandem mass spectrometric detection.
    Langen J, Wegmann-Herr P, Schmarr HG.
    Anal Bioanal Chem; 2016 Sep 24; 408(23):6483-96. PubMed ID: 27417694
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 35.