These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
122 related items for PubMed ID: 23258264
1. Mutations in msrA and msrB, encoding epimer-specific methionine sulfoxide reductases, affect expression of glycerol-catabolic operons in Enterococcus faecalis differently. Zhao C, Bizzini A, Zhang X, Sauvageot N, Hartke A. Microbiology (Reading); 2013 Mar; 159(Pt 3):615-620. PubMed ID: 23258264 [Abstract] [Full Text] [Related]
2. Role of methionine sulfoxide reductases A and B of Enterococcus faecalis in oxidative stress and virulence. Zhao C, Hartke A, La Sorda M, Posteraro B, Laplace JM, Auffray Y, Sanguinetti M. Infect Immun; 2010 Sep; 78(9):3889-97. PubMed ID: 20566694 [Abstract] [Full Text] [Related]
3. Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress. Romsang A, Atichartpongkul S, Trinachartvanit W, Vattanaviboon P, Mongkolsuk S. J Bacteriol; 2013 Aug; 195(15):3299-308. PubMed ID: 23687271 [Abstract] [Full Text] [Related]
4. Glycerol is metabolized in a complex and strain-dependent manner in Enterococcus faecalis. Bizzini A, Zhao C, Budin-Verneuil A, Sauvageot N, Giard JC, Auffray Y, Hartke A. J Bacteriol; 2010 Feb; 192(3):779-85. PubMed ID: 19966010 [Abstract] [Full Text] [Related]
5. Aerobic glycerol dissimilation via the Enterococcus faecalis DhaK pathway depends on NADH oxidase and a phosphotransfer reaction from PEP to DhaK via EIIADha. Sauvageot N, Ladjouzi R, Benachour A, Rincé A, Deutscher J, Hartke A. Microbiology (Reading); 2012 Oct; 158(Pt 10):2661-2666. PubMed ID: 22878395 [Abstract] [Full Text] [Related]
6. Significance of four methionine sulfoxide reductases in Staphylococcus aureus. Singh VK, Vaish M, Johansson TR, Baum KR, Ring RP, Singh S, Shukla SK, Moskovitz J. PLoS One; 2015 Oct; 10(2):e0117594. PubMed ID: 25680075 [Abstract] [Full Text] [Related]
7. Proteome alteration in oxidative stress-sensitive methionine sulfoxide reductase-silenced HEK293 cells. Ugarte N, Ladouce R, Radjei S, Gareil M, Friguet B, Petropoulos I. Free Radic Biol Med; 2013 Dec; 65():1023-1036. PubMed ID: 23988788 [Abstract] [Full Text] [Related]
8. Contribution of methionine sulfoxide reductase B (MsrB) to Francisella tularensis infection in mice. Saha SS, Hashino M, Suzuki J, Uda A, Watanabe K, Shimizu T, Watarai M. FEMS Microbiol Lett; 2017 Jan; 364(2):. PubMed ID: 28108583 [Abstract] [Full Text] [Related]
9. Contribution of the stereospecific methionine sulphoxide reductases MsrA and MsrB to oxidative and nitrosative stress resistance in the food-borne pathogen Campylobacter jejuni. Atack JM, Kelly DJ. Microbiology (Reading); 2008 Aug; 154(Pt 8):2219-2230. PubMed ID: 18667555 [Abstract] [Full Text] [Related]
10. The sRNA RyhB regulates the synthesis of the Escherichia coli methionine sulfoxide reductase MsrB but not MsrA. Bos J, Duverger Y, Thouvenot B, Chiaruttini C, Branlant C, Springer M, Charpentier B, Barras F. PLoS One; 2013 Aug; 8(5):e63647. PubMed ID: 23671689 [Abstract] [Full Text] [Related]
11. 20-hydroxyecdysone regulates expression of methioninesulfoxide reductases through transcription factor FOXO in the red flour beetle, Tribolium castaneum. Ji C, Zhang N, Jiang H, Meng X, Ge H, Yang X, Xu X, Qian K, Park Y, Zheng Y, Wang J. Insect Biochem Mol Biol; 2021 Apr; 131():103546. PubMed ID: 33548484 [Abstract] [Full Text] [Related]
12. Functional comparison of methionine sulphoxide reductase A and B in Corynebacterium glutamicum. Si M, Feng Y, Chen K, Kang Y, Chen C, Wang Y, Shen X. J Gen Appl Microbiol; 2017 Nov 17; 63(5):280-286. PubMed ID: 28904252 [Abstract] [Full Text] [Related]
13. Compartmentalization and regulation of mitochondrial function by methionine sulfoxide reductases in yeast. Kaya A, Koc A, Lee BC, Fomenko DE, Rederstorff M, Krol A, Lescure A, Gladyshev VN. Biochemistry; 2010 Oct 05; 49(39):8618-25. PubMed ID: 20799725 [Abstract] [Full Text] [Related]
14. Function of the evolutionarily conserved plant methionine-S-sulfoxide reductase without the catalytic residue. Le DT, Nguyen KL, Chu HD, Vu NT, Pham TTL, Tran LP. Protoplasma; 2018 Nov 05; 255(6):1741-1750. PubMed ID: 29808313 [Abstract] [Full Text] [Related]
15. Methionine sulfoxide reductases and virulence of bacterial pathogens. Sasindran SJ, Saikolappan S, Dhandayuthapani S. Future Microbiol; 2007 Dec 05; 2(6):619-30. PubMed ID: 18041903 [Abstract] [Full Text] [Related]
16. Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli. Ezraty B, Grimaud R, El Hassouni M, Moinier D, Barras F. EMBO J; 2004 Apr 21; 23(8):1868-77. PubMed ID: 15057280 [Abstract] [Full Text] [Related]
17. Methionine sulfoxide reductase B (MsrB) of Mycobacterium smegmatis plays a limited role in resisting oxidative stress. Dhandayuthapani S, Jagannath C, Nino C, Saikolappan S, Sasindran SJ. Tuberculosis (Edinb); 2009 Dec 21; 89 Suppl 1(Suppl 1):S26-32. PubMed ID: 20006300 [Abstract] [Full Text] [Related]
18. Multiple methionine sulfoxide reductase genes in Staphylococcus aureus: expression of activity and roles in tolerance of oxidative stress. Singh VK, Moskovitz J. Microbiology (Reading); 2003 Oct 21; 149(Pt 10):2739-2747. PubMed ID: 14523107 [Abstract] [Full Text] [Related]
19. Structural and kinetic analysis of an MsrA-MsrB fusion protein from Streptococcus pneumoniae. Kim YK, Shin YJ, Lee WH, Kim HY, Hwang KY. Mol Microbiol; 2009 May 21; 72(3):699-709. PubMed ID: 19400786 [Abstract] [Full Text] [Related]
20. Overexpression of methionine-R-sulfoxide reductases has no influence on fruit fly aging. Shchedrina VA, Vorbrüggen G, Lee BC, Kim HY, Kabil H, Harshman LG, Gladyshev VN. Mech Ageing Dev; 2009 Jul 21; 130(7):429-43. PubMed ID: 19409408 [Abstract] [Full Text] [Related] Page: [Next] [New Search]