These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
385 related items for PubMed ID: 23259731
1. Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces. Rykaczewski K, Paxson AT, Anand S, Chen X, Wang Z, Varanasi KK. Langmuir; 2013 Jan 22; 29(3):881-91. PubMed ID: 23259731 [Abstract] [Full Text] [Related]
2. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition. Zhang K, Li Z, Maxey M, Chen S, Karniadakis GE. Langmuir; 2019 Feb 12; 35(6):2431-2442. PubMed ID: 30640480 [Abstract] [Full Text] [Related]
3. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces. Jung YC, Bhushan B. J Microsc; 2008 Jan 12; 229(Pt 1):127-40. PubMed ID: 18173651 [Abstract] [Full Text] [Related]
5. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation. Mondal B, Mac Giolla Eain M, Xu Q, Egan VM, Punch J, Lyons AM. ACS Appl Mater Interfaces; 2015 Oct 28; 7(42):23575-88. PubMed ID: 26372672 [Abstract] [Full Text] [Related]
6. Thermodynamic analysis of the effect of the hierarchical architecture of a superhydrophobic surface on a condensed drop state. Liu T, Sun W, Sun X, Ai H. Langmuir; 2010 Sep 21; 26(18):14835-41. PubMed ID: 20726606 [Abstract] [Full Text] [Related]
13. Dynamics of nanoparticle self-assembly into superhydrophobic liquid marbles during water condensation. Rykaczewski K, Chinn J, Walker ML, Scott JH, Chinn A, Jones W. ACS Nano; 2011 Dec 27; 5(12):9746-54. PubMed ID: 22035295 [Abstract] [Full Text] [Related]
14. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment. Synytska A, Ionov L, Grundke K, Stamm M. Langmuir; 2009 Mar 03; 25(5):3132-6. PubMed ID: 19437778 [Abstract] [Full Text] [Related]
15. How Superhydrophobic Grooves Drive Single-Droplet Jumping. Chu F, Yan X, Miljkovic N. Langmuir; 2022 Apr 12; 38(14):4452-4460. PubMed ID: 35348343 [Abstract] [Full Text] [Related]
16. Evaporation of droplets on superhydrophobic surfaces: surface roughness and small droplet size effects. Chen X, Ma R, Li J, Hao C, Guo W, Luk BL, Li SC, Yao S, Wang Z. Phys Rev Lett; 2012 Sep 14; 109(11):116101. PubMed ID: 23005650 [Abstract] [Full Text] [Related]
17. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures. Zhang P, Maeda Y, Lv F, Takata Y, Orejon D. ACS Appl Mater Interfaces; 2017 Oct 11; 9(40):35391-35403. PubMed ID: 28925681 [Abstract] [Full Text] [Related]
18. Critical and Optimal Wall Conditions for Coalescence-Induced Droplet Jumping on Textured Superhydrophobic Surfaces. Yin C, Wang T, Che Z, Jia M, Sun K. Langmuir; 2019 Dec 10; 35(49):16201-16209. PubMed ID: 31738548 [Abstract] [Full Text] [Related]