These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Electrochemical quartz crystal microbalance studies on enzymatic specific activity and direct electrochemistry of immobilized glucose oxidase in the presence of sodium dodecyl benzene sulfonate and multiwalled carbon nanotubes. Su Y, Xie Q, Chen C, Zhang Q, Ma M, Yao S. Biotechnol Prog; 2008; 24(1):262-72. PubMed ID: 18062696 [Abstract] [Full Text] [Related]
25. Comparison of the direct electrochemistry of glucose oxidase immobilized on the surface of Au, CdS and ZnS nanostructures. Du J, Yu X, Di J. Biosens Bioelectron; 2012; 37(1):88-93. PubMed ID: 22609554 [Abstract] [Full Text] [Related]
26. Highly sensitive electrochemical label-free aptasensor based on dual electrocatalytic amplification of Pt-AuNPs and HRP. Bai L, Yuan R, Chai Y, Yuan Y, Mao L, Zhuo Y. Analyst; 2011 May 07; 136(9):1840-5. PubMed ID: 21380419 [Abstract] [Full Text] [Related]
29. Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor. Dai Z, Shao G, Hong J, Bao J, Shen J. Biosens Bioelectron; 2009 Jan 01; 24(5):1286-91. PubMed ID: 18774704 [Abstract] [Full Text] [Related]
31. Highly sensitive detection of platelet-derived growth factor on a functionalized diamond surface using aptamer sandwich design. Ruslinda AR, Penmatsa V, Ishii Y, Tajima S, Kawarada H. Analyst; 2012 Apr 07; 137(7):1692-7. PubMed ID: 22349046 [Abstract] [Full Text] [Related]
32. Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode. Wu BY, Hou SH, Yin F, Zhao ZX, Wang YY, Wang XS, Chen Q. Biosens Bioelectron; 2007 Jun 15; 22(12):2854-60. PubMed ID: 17212983 [Abstract] [Full Text] [Related]
36. An ultrasensitive signal-on electrochemical aptasensor via target-induced conjunction of split aptamer fragments. Chen J, Zhang J, Li J, Yang HH, Fu F, Chen G. Biosens Bioelectron; 2010 Jan 15; 25(5):996-1000. PubMed ID: 19818593 [Abstract] [Full Text] [Related]
37. An electrochemical aptasensor for detection of IFN-γ using graphene and a dual signal amplification strategy based on the exonuclease-mediated surface-initiated enzymatic polymerization. Liu C, Xiang G, Jiang D, Liu L, Liu F, Luo F, Pu X. Analyst; 2015 Nov 21; 140(22):7784-91. PubMed ID: 26460269 [Abstract] [Full Text] [Related]
38. Amplified detection of leukemia cancer cells using an aptamer-conjugated gold-coated magnetic nanoparticles on a nitrogen-doped graphene modified electrode. Khoshfetrat SM, Mehrgardi MA. Bioelectrochemistry; 2017 Apr 21; 114():24-32. PubMed ID: 27992855 [Abstract] [Full Text] [Related]
39. A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode. Deng C, Chen J, Nie Z, Si S. Biosens Bioelectron; 2010 Sep 15; 26(1):213-9. PubMed ID: 20620040 [Abstract] [Full Text] [Related]
40. Direct electrochemistry of glucose oxidase in a colloid Au-dihexadecylphosphate composite film and its application to develop a glucose biosensor. Wu Y, Hu S. Bioelectrochemistry; 2007 May 15; 70(2):335-41. PubMed ID: 16766233 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]