These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


309 related items for PubMed ID: 23266217

  • 1. Mechanisms by which transcription factors gain access to target sequence elements in chromatin.
    Guertin MJ, Lis JT.
    Curr Opin Genet Dev; 2013 Apr; 23(2):116-23. PubMed ID: 23266217
    [Abstract] [Full Text] [Related]

  • 2. In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae.
    Gossett AJ, Lieb JD.
    PLoS Genet; 2012 Apr; 8(6):e1002771. PubMed ID: 22737086
    [Abstract] [Full Text] [Related]

  • 3. Opening windows to the genome.
    Whitehouse I, Tsukiyama T.
    Cell; 2009 May 01; 137(3):400-2. PubMed ID: 19410536
    [Abstract] [Full Text] [Related]

  • 4. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT, Shiu SH, Tsai HK.
    PLoS Comput Biol; 2015 Aug 01; 11(8):e1004418. PubMed ID: 26291518
    [Abstract] [Full Text] [Related]

  • 5. Sequence and chromatin determinants of cell-type-specific transcription factor binding.
    Arvey A, Agius P, Noble WS, Leslie C.
    Genome Res; 2012 Sep 01; 22(9):1723-34. PubMed ID: 22955984
    [Abstract] [Full Text] [Related]

  • 6. Mechanisms that specify promoter nucleosome location and identity.
    Hartley PD, Madhani HD.
    Cell; 2009 May 01; 137(3):445-58. PubMed ID: 19410542
    [Abstract] [Full Text] [Related]

  • 7. Regulation of the boundaries of accessible chromatin.
    Chai X, Nagarajan S, Kim K, Lee K, Choi JK.
    PLoS Genet; 2013 May 01; 9(9):e1003778. PubMed ID: 24068952
    [Abstract] [Full Text] [Related]

  • 8. Decoding a signature-based model of transcription cofactor recruitment dictated by cardinal cis-regulatory elements in proximal promoter regions.
    Benner C, Konovalov S, Mackintosh C, Hutt KR, Stunnenberg R, Garcia-Bassets I.
    PLoS Genet; 2013 Nov 01; 9(11):e1003906. PubMed ID: 24244184
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Transcription factor-DNA binding: beyond binding site motifs.
    Inukai S, Kock KH, Bulyk ML.
    Curr Opin Genet Dev; 2017 Apr 01; 43():110-119. PubMed ID: 28359978
    [Abstract] [Full Text] [Related]

  • 11. Occupancy maps of 208 chromatin-associated proteins in one human cell type.
    Partridge EC, Chhetri SB, Prokop JW, Ramaker RC, Jansen CS, Goh ST, Mackiewicz M, Newberry KM, Brandsmeier LA, Meadows SK, Messer CL, Hardigan AA, Coppola CJ, Dean EC, Jiang S, Savic D, Mortazavi A, Wold BJ, Myers RM, Mendenhall EM.
    Nature; 2020 Jul 01; 583(7818):720-728. PubMed ID: 32728244
    [Abstract] [Full Text] [Related]

  • 12. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S, Bucher P.
    BMC Bioinformatics; 2016 Jan 11; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [Abstract] [Full Text] [Related]

  • 13. Weakly positioned nucleosomes enhance the transcriptional competency of chromatin.
    Belch Y, Yang J, Liu Y, Malkaram SA, Liu R, Riethoven JJ, Ladunga I.
    PLoS One; 2010 Sep 24; 5(9):e12984. PubMed ID: 20886052
    [Abstract] [Full Text] [Related]

  • 14. Preferential accessibility of the yeast his3 promoter is determined by a general property of the DNA sequence, not by specific elements.
    Mai X, Chou S, Struhl K.
    Mol Cell Biol; 2000 Sep 24; 20(18):6668-76. PubMed ID: 10958664
    [Abstract] [Full Text] [Related]

  • 15. Profiling Accessible Chromatin and Nucleosomes in the Mammalian Genome.
    Lim HW, Iwafuchi M.
    Methods Mol Biol; 2023 Sep 24; 2599():59-68. PubMed ID: 36427143
    [Abstract] [Full Text] [Related]

  • 16. High nucleosome occupancy is encoded at human regulatory sequences.
    Tillo D, Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Field Y, Lieb JD, Widom J, Segal E, Hughes TR.
    PLoS One; 2010 Feb 09; 5(2):e9129. PubMed ID: 20161746
    [Abstract] [Full Text] [Related]

  • 17. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions.
    Schep AN, Buenrostro JD, Denny SK, Schwartz K, Sherlock G, Greenleaf WJ.
    Genome Res; 2015 Nov 09; 25(11):1757-70. PubMed ID: 26314830
    [Abstract] [Full Text] [Related]

  • 18. The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism.
    Parnell TJ, Schlichter A, Wilson BG, Cairns BR.
    Elife; 2015 Mar 30; 4():e06073. PubMed ID: 25821983
    [Abstract] [Full Text] [Related]

  • 19. Determinants and dynamics of genome accessibility.
    Bell O, Tiwari VK, Thomä NH, Schübeler D.
    Nat Rev Genet; 2011 Jul 12; 12(8):554-64. PubMed ID: 21747402
    [Abstract] [Full Text] [Related]

  • 20. Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast.
    Sekinger EA, Moqtaderi Z, Struhl K.
    Mol Cell; 2005 Jun 10; 18(6):735-48. PubMed ID: 15949447
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.