These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


141 related items for PubMed ID: 23268732

  • 1. Evolution of the amyloid fiber over multiple length scales.
    Ridgley DM, Barone JR.
    ACS Nano; 2013 Feb 26; 7(2):1006-15. PubMed ID: 23268732
    [Abstract] [Full Text] [Related]

  • 2. Characterization of large amyloid fibers and tapes with Fourier transform infrared (FT-IR) and Raman spectroscopy.
    Ridgley DM, Claunch EC, Barone JR.
    Appl Spectrosc; 2013 Dec 26; 67(12):1417-26. PubMed ID: 24359656
    [Abstract] [Full Text] [Related]

  • 3. Peptide mixtures can self-assemble into large amyloid fibers of varying size and morphology.
    Ridgley DM, Ebanks KC, Barone JR.
    Biomacromolecules; 2011 Oct 10; 12(10):3770-9. PubMed ID: 21879764
    [Abstract] [Full Text] [Related]

  • 4. Multiple assembly pathways underlie amyloid-beta fibril polymorphisms.
    Goldsbury C, Frey P, Olivieri V, Aebi U, Müller SA.
    J Mol Biol; 2005 Sep 16; 352(2):282-98. PubMed ID: 16095615
    [Abstract] [Full Text] [Related]

  • 5. Genetically encoded self-assembly of large amyloid fibers.
    Ridgley DM, Freedman BG, Lee PW, Barone JR.
    Biomater Sci; 2014 Apr 04; 2(4):560-566. PubMed ID: 32481992
    [Abstract] [Full Text] [Related]

  • 6. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion.
    Mishra R, Sörgjerd K, Nyström S, Nordigården A, Yu YC, Hammarström P.
    J Mol Biol; 2007 Feb 23; 366(3):1029-44. PubMed ID: 17196616
    [Abstract] [Full Text] [Related]

  • 7. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R, Cranford SW, Buehler MJ.
    Nanoscale; 2011 Apr 23; 3(4):1748-55. PubMed ID: 21347488
    [Abstract] [Full Text] [Related]

  • 8. Structural regulation of a peptide-conjugated graft copolymer: a simple model for amyloid formation.
    Koga T, Taguchi K, Kobuke Y, Kinoshita T, Higuchi M.
    Chemistry; 2003 Mar 03; 9(5):1146-56. PubMed ID: 12596151
    [Abstract] [Full Text] [Related]

  • 9. Exploiting amyloid fibril lamination for nanotube self-assembly.
    Lu K, Jacob J, Thiyagarajan P, Conticello VP, Lynn DG.
    J Am Chem Soc; 2003 May 28; 125(21):6391-3. PubMed ID: 12785778
    [Abstract] [Full Text] [Related]

  • 10. Transthyretin fibrillogenesis entails the assembly of monomers: a molecular model for in vitro assembled transthyretin amyloid-like fibrils.
    Cardoso I, Goldsbury CS, Müller SA, Olivieri V, Wirtz S, Damas AM, Aebi U, Saraiva MJ.
    J Mol Biol; 2002 Apr 12; 317(5):683-95. PubMed ID: 11955017
    [Abstract] [Full Text] [Related]

  • 11. Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers.
    Wang Q, Shah N, Zhao J, Wang C, Zhao C, Liu L, Li L, Zhou F, Zheng J.
    Phys Chem Chem Phys; 2011 Sep 07; 13(33):15200-10. PubMed ID: 21769359
    [Abstract] [Full Text] [Related]

  • 12. Solution conformation and amyloid-like fibril formation of a polar peptide derived from a beta-hairpin in the OspA single-layer beta-sheet.
    Ohnishi S, Koide A, Koide S.
    J Mol Biol; 2000 Aug 11; 301(2):477-89. PubMed ID: 10926522
    [Abstract] [Full Text] [Related]

  • 13. General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons.
    Lara C, Adamcik J, Jordens S, Mezzenga R.
    Biomacromolecules; 2011 May 09; 12(5):1868-75. PubMed ID: 21466236
    [Abstract] [Full Text] [Related]

  • 14. Fine structure study of Abeta1-42 fibrillogenesis with atomic force microscopy.
    Arimon M, Díez-Pérez I, Kogan MJ, Durany N, Giralt E, Sanz F, Fernàndez-Busquets X.
    FASEB J; 2005 Aug 09; 19(10):1344-6. PubMed ID: 15919759
    [Abstract] [Full Text] [Related]

  • 15. Noncore residues influence the kinetics of functional TTR(105-115)-based amyloid fibril assembly.
    Bongiovanni MN, Puri D, Goldie KN, Gras SL.
    J Mol Biol; 2012 Aug 10; 421(2-3):256-69. PubMed ID: 22198409
    [Abstract] [Full Text] [Related]

  • 16. Backbone-modified amylin derivatives: implications for amyloid inhibitor design and as template for self-assembling bionanomaterials.
    Elgersma RC, Posthuma G, Rijkers DT, Liskamp RM.
    J Pept Sci; 2007 Nov 10; 13(11):709-16. PubMed ID: 17890652
    [Abstract] [Full Text] [Related]

  • 17. Dissociation of Abeta(16-22) amyloid fibrils probed by molecular dynamics.
    Takeda T, Klimov DK.
    J Mol Biol; 2007 May 11; 368(4):1202-13. PubMed ID: 17382346
    [Abstract] [Full Text] [Related]

  • 18. Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties.
    Tenidis K, Waldner M, Bernhagen J, Fischle W, Bergmann M, Weber M, Merkle ML, Voelter W, Brunner H, Kapurniotu A.
    J Mol Biol; 2000 Jan 28; 295(4):1055-71. PubMed ID: 10656810
    [Abstract] [Full Text] [Related]

  • 19. Amyloid fibril formation from full-length and fragments of amylin.
    Goldsbury C, Goldie K, Pellaud J, Seelig J, Frey P, Müller SA, Kistler J, Cooper GJ, Aebi U.
    J Struct Biol; 2000 Jun 28; 130(2-3):352-62. PubMed ID: 10940238
    [Abstract] [Full Text] [Related]

  • 20. Self-assembly of peptide-amphiphile C12-Abeta(11-17) into nanofibrils.
    Deng M, Yu D, Hou Y, Wang Y.
    J Phys Chem B; 2009 Jun 25; 113(25):8539-44. PubMed ID: 19534562
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.