These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
365 related items for PubMed ID: 23271622
1. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: I. Influence of the ratio of glucose/xylose on ethanol production. Matsushika A, Sawayama S. Appl Biochem Biotechnol; 2013 Feb; 169(3):712-21. PubMed ID: 23271622 [Abstract] [Full Text] [Related]
2. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production. Matsushika A, Sawayama S. Appl Biochem Biotechnol; 2012 Dec; 168(8):2094-104. PubMed ID: 23076570 [Abstract] [Full Text] [Related]
3. Effect of initial cell concentration on ethanol production by flocculent Saccharomyces cerevisiae with xylose-fermenting ability. Matsushika A, Sawayama S. Appl Biochem Biotechnol; 2010 Nov; 162(7):1952-60. PubMed ID: 20432070 [Abstract] [Full Text] [Related]
4. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Madhavan A, Tamalampudi S, Srivastava A, Fukuda H, Bisaria VS, Kondo A. Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247 [Abstract] [Full Text] [Related]
5. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A, Sawayama S. Enzyme Microb Technol; 2011 May 06; 48(6-7):466-71. PubMed ID: 22113018 [Abstract] [Full Text] [Related]
6. Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae. Roca C, Olsson L. Appl Microbiol Biotechnol; 2003 Jan 06; 60(5):560-3. PubMed ID: 12536256 [Abstract] [Full Text] [Related]
7. [Effects of mutational sptl5 gene to xylose utilization of Saccharomyces cerevisiae]. Liu H, Tang W, Lai C, Yan M, Xu L, Ouyang P. Sheng Wu Gong Cheng Xue Bao; 2009 Jun 06; 25(6):875-9. PubMed ID: 19777815 [Abstract] [Full Text] [Related]
8. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK, Sedlak M, Khan A, Ho NW. Appl Microbiol Biotechnol; 2010 Aug 06; 87(5):1803-11. PubMed ID: 20449743 [Abstract] [Full Text] [Related]
9. Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. cerevisiae TMB3400. Erdei B, Frankó B, Galbe M, Zacchi G. J Biotechnol; 2013 Mar 10; 164(1):50-8. PubMed ID: 23262129 [Abstract] [Full Text] [Related]
10. Effect of fermentation conditions on the flocculation of recombinant Saccharomyces cerevisiae capable of co-fermenting glucose and xylose. Matsushika A, Morikawa H, Goshima T, Hoshino T. Appl Biochem Biotechnol; 2014 Sep 10; 174(2):623-31. PubMed ID: 25086918 [Abstract] [Full Text] [Related]
11. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. Casey E, Sedlak M, Ho NW, Mosier NS. FEMS Yeast Res; 2010 Jun 10; 10(4):385-93. PubMed ID: 20402796 [Abstract] [Full Text] [Related]
12. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Matsushika A, Inoue H, Murakami K, Takimura O, Sawayama S. Bioresour Technol; 2009 Apr 10; 100(8):2392-8. PubMed ID: 19128960 [Abstract] [Full Text] [Related]
13. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts. Kumari R, Pramanik K. Appl Biochem Biotechnol; 2012 Jun 10; 167(4):873-84. PubMed ID: 22639357 [Abstract] [Full Text] [Related]
14. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism. Kim SR, Lee KS, Choi JH, Ha SJ, Kweon DH, Seo JH, Jin YS. J Biotechnol; 2010 Nov 10; 150(3):404-7. PubMed ID: 20933550 [Abstract] [Full Text] [Related]
15. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. Li Y, Park JY, Shiroma R, Tokuyasu K. J Biosci Bioeng; 2011 Jun 10; 111(6):682-6. PubMed ID: 21397557 [Abstract] [Full Text] [Related]
16. Multi-stage continuous culture fermentation of glucose-xylose mixtures to fuel ethanol using genetically engineered Saccharomyces cerevisiae 424A. Govindaswamy S, Vane LM. Bioresour Technol; 2010 Feb 10; 101(4):1277-84. PubMed ID: 19811910 [Abstract] [Full Text] [Related]
17. Co-fermentation of hexose and pentose sugars in a spent sulfite liquor matrix with genetically modified Saccharomyces cerevisiae. Novy V, Krahulec S, Longus K, Klimacek M, Nidetzky B. Bioresour Technol; 2013 Feb 10; 130():439-48. PubMed ID: 23313691 [Abstract] [Full Text] [Related]
18. Ethanolic fermentation of acid pre-treated starch industry effluents by recombinant Saccharomyces cerevisiae strains. Zaldivar J, Roca C, Le Foll C, Hahn-Hägerdal B, Olsson L. Bioresour Technol; 2005 Oct 10; 96(15):1670-6. PubMed ID: 16023569 [Abstract] [Full Text] [Related]
19. Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms. Zhang J, Lynd LR. Biotechnol Bioeng; 2010 Oct 01; 107(2):235-44. PubMed ID: 20506488 [Abstract] [Full Text] [Related]
20. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. Ohgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G. J Biotechnol; 2006 Dec 01; 126(4):488-98. PubMed ID: 16828190 [Abstract] [Full Text] [Related] Page: [Next] [New Search]