These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


250 related items for PubMed ID: 23275506

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Acidic stress induces the formation of P-bodies, but not stress granules, with mild attenuation of bulk translation in Saccharomyces cerevisiae.
    Iwaki A, Izawa S.
    Biochem J; 2012 Sep 01; 446(2):225-33. PubMed ID: 22686455
    [Abstract] [Full Text] [Related]

  • 3. The yeast ADH7 promoter enables gene expression under pronounced translation repression caused by the combined stress of vanillin, furfural, and 5-hydroxymethylfurfural.
    Ishida Y, Nguyen TTM, Izawa S.
    J Biotechnol; 2017 Jun 20; 252():65-72. PubMed ID: 28458045
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S.
    Appl Microbiol Biotechnol; 2008 Dec 20; 81(4):743-53. PubMed ID: 18810428
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Analyzing P-bodies and stress granules in Saccharomyces cerevisiae.
    Buchan JR, Nissan T, Parker R.
    Methods Enzymol; 2010 Dec 20; 470():619-40. PubMed ID: 20946828
    [Abstract] [Full Text] [Related]

  • 10. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae.
    Wahlbom CF, Hahn-Hägerdal B.
    Biotechnol Bioeng; 2002 Apr 20; 78(2):172-8. PubMed ID: 11870608
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors.
    Liu ZL.
    Appl Microbiol Biotechnol; 2006 Nov 20; 73(1):27-36. PubMed ID: 17028874
    [Abstract] [Full Text] [Related]

  • 13. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains.
    Liu ZL, Slininger PJ, Gorsich SW.
    Appl Biochem Biotechnol; 2005 Nov 20; 121-124():451-60. PubMed ID: 15917621
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.
    Wang X, Ma M, Liu ZL, Xiang Q, Li X, Liu N, Zhang X.
    Appl Microbiol Biotechnol; 2016 Aug 20; 100(15):6671-6682. PubMed ID: 27003269
    [Abstract] [Full Text] [Related]

  • 18. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae.
    Nguyen TT, Kitajima S, Izawa S.
    J Biosci Bioeng; 2014 Sep 20; 118(3):263-9. PubMed ID: 24725964
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.
    Liu ZL, Ma M, Song M.
    Mol Genet Genomics; 2009 Sep 20; 282(3):233-44. PubMed ID: 19517136
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.