These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 23281936

  • 1. Supervised maximum-likelihood weighting of composite protein networks for complex prediction.
    Yong CH, Liu G, Chua HN, Wong L.
    BMC Syst Biol; 2012; 6 Suppl 2(Suppl 2):S13. PubMed ID: 23281936
    [Abstract] [Full Text] [Related]

  • 2. Prediction of problematic complexes from PPI networks: sparse, embedded, and small complexes.
    Yong CH, Wong L.
    Biol Direct; 2015 Aug 01; 10():40. PubMed ID: 26231465
    [Abstract] [Full Text] [Related]

  • 3. Identification of protein complexes by integrating multiple alignment of protein interaction networks.
    Ma CY, Chen YP, Berger B, Liao CS.
    Bioinformatics; 2017 Jun 01; 33(11):1681-1688. PubMed ID: 28130237
    [Abstract] [Full Text] [Related]

  • 4. Discovery of small protein complexes from PPI networks with size-specific supervised weighting.
    Yong CH, Maruyama O, Wong L.
    BMC Syst Biol; 2014 Jun 01; 8 Suppl 5(Suppl 5):S3. PubMed ID: 25559663
    [Abstract] [Full Text] [Related]

  • 5. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks.
    Ou-Yang L, Yan H, Zhang XF.
    BMC Bioinformatics; 2017 Dec 01; 18(Suppl 13):463. PubMed ID: 29219066
    [Abstract] [Full Text] [Related]

  • 6. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K, Pavlopoulou N, Papasavvas C, Likothanassis S, Dimitrakopoulos C, Georgopoulos E, Moschopoulos C, Mavroudi S.
    Artif Intell Med; 2015 Mar 01; 63(3):181-9. PubMed ID: 25765008
    [Abstract] [Full Text] [Related]

  • 7. MCL-CAw: a refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure.
    Srihari S, Ning K, Leong HW.
    BMC Bioinformatics; 2010 Oct 12; 11():504. PubMed ID: 20939868
    [Abstract] [Full Text] [Related]

  • 8. Decision tree classifier based on topological characteristics of subgraph for the mining of protein complexes from large scale PPI networks.
    Sahoo TR, Patra S, Vipsita S.
    Comput Biol Chem; 2023 Oct 12; 106():107935. PubMed ID: 37536230
    [Abstract] [Full Text] [Related]

  • 9. Identifying protein complexes based on node embeddings obtained from protein-protein interaction networks.
    Liu X, Yang Z, Sang S, Zhou Z, Wang L, Zhang Y, Lin H, Wang J, Xu B.
    BMC Bioinformatics; 2018 Sep 21; 19(1):332. PubMed ID: 30241459
    [Abstract] [Full Text] [Related]

  • 10. Molecular complex detection in protein interaction networks through reinforcement learning.
    Palukuri MV, Patil RS, Marcotte EM.
    BMC Bioinformatics; 2023 Aug 02; 24(1):306. PubMed ID: 37532987
    [Abstract] [Full Text] [Related]

  • 11. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods.
    Dimitrakopoulos C, Theofilatos K, Pegkas A, Likothanassis S, Mavroudi S.
    Artif Intell Med; 2016 Jul 02; 71():62-9. PubMed ID: 27506132
    [Abstract] [Full Text] [Related]

  • 12. Identifying conserved protein complexes between species by constructing interolog networks.
    Nguyen PV, Srihari S, Leong HW.
    BMC Bioinformatics; 2013 Jul 02; 14 Suppl 16(Suppl 16):S8. PubMed ID: 24564762
    [Abstract] [Full Text] [Related]

  • 13. Resolving the structure of interactomes with hierarchical agglomerative clustering.
    Park Y, Bader JS.
    BMC Bioinformatics; 2011 Feb 15; 12 Suppl 1(Suppl 1):S44. PubMed ID: 21342576
    [Abstract] [Full Text] [Related]

  • 14. Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data.
    Li M, Wu X, Wang J, Pan Y.
    BMC Bioinformatics; 2012 May 23; 13():109. PubMed ID: 22621308
    [Abstract] [Full Text] [Related]

  • 15. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B, Guan J.
    IEEE/ACM Trans Comput Biol Bioinform; 2014 May 23; 11(4):616-27. PubMed ID: 26356332
    [Abstract] [Full Text] [Related]

  • 16. Protein complex prediction in large ontology attributed protein-protein interaction networks.
    Zhang Y, Lin H, Yang Z, Wang J, Li Y, Xu B.
    IEEE/ACM Trans Comput Biol Bioinform; 2013 May 23; 10(3):729-41. PubMed ID: 24091405
    [Abstract] [Full Text] [Related]

  • 17. SNFM: A semi-supervised NMF algorithm for detecting biological functional modules.
    Man YT, Liu GM, Yang K, Zhou XZ.
    Math Biosci Eng; 2019 Mar 07; 16(4):1933-1948. PubMed ID: 31137193
    [Abstract] [Full Text] [Related]

  • 18. Integrating network topology, gene expression data and GO annotation information for protein complex prediction.
    Zhang W, Xu J, Li Y, Zou X.
    J Bioinform Comput Biol; 2019 Feb 07; 17(1):1950001. PubMed ID: 30803297
    [Abstract] [Full Text] [Related]

  • 19. Protein complex prediction in interaction network based on network motif.
    Patra S, Mohapatra A.
    Comput Biol Chem; 2020 Dec 07; 89():107399. PubMed ID: 33152665
    [Abstract] [Full Text] [Related]

  • 20. A novel link prediction algorithm for reconstructing protein-protein interaction networks by topological similarity.
    Lei C, Ruan J.
    Bioinformatics; 2013 Feb 01; 29(3):355-64. PubMed ID: 23235927
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.