These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 23285138

  • 21. Downregulation of Mcl-1 through GSK-3β activation contributes to arsenic trioxide-induced apoptosis in acute myeloid leukemia cells.
    Wang R, Xia L, Gabrilove J, Waxman S, Jing Y.
    Leukemia; 2013 Feb; 27(2):315-24. PubMed ID: 22751450
    [Abstract] [Full Text] [Related]

  • 22. Alteration in miRNA gene expression pattern in acute promyelocytic leukemia cell induced by arsenic trioxide: a possible mechanism to explain arsenic multi-target action.
    Ghaffari SH, Bashash D, Dizaji MZ, Ghavamzadeh A, Alimoghaddam K.
    Tumour Biol; 2012 Feb; 33(1):157-72. PubMed ID: 22072212
    [Abstract] [Full Text] [Related]

  • 23. Bone marrow stroma-induced resistance of chronic lymphocytic leukemia cells to arsenic trioxide involves Mcl-1 upregulation and is overcome by inhibiting the PI3Kδ or PKCβ signaling pathways.
    Amigo-Jiménez I, Bailón E, Aguilera-Montilla N, Terol MJ, García-Marco JA, García-Pardo A.
    Oncotarget; 2015 Dec 29; 6(42):44832-48. PubMed ID: 26540567
    [Abstract] [Full Text] [Related]

  • 24. Induction of apoptosis in arsenic trioxide-treated lung cancer A549 cells by buthionine sulfoximine.
    Han YH, Kim SZ, Kim SH, Park WH.
    Mol Cells; 2008 Aug 31; 26(2):158-64. PubMed ID: 18596414
    [Abstract] [Full Text] [Related]

  • 25. Proteomic and functional analyses reveal a dual molecular mechanism underlying arsenic-induced apoptosis in human multiple myeloma cells.
    Ge F, Lu XP, Zeng HL, He QY, Xiong S, Jin L, He QY.
    J Proteome Res; 2009 Jun 31; 8(6):3006-19. PubMed ID: 19364129
    [Abstract] [Full Text] [Related]

  • 26. Bcl-2 hijacks the arsenic trioxide resistance in SH-SY5Y cells.
    Wang J, Peng X, Yang D, Guo M, Xu X, Yin F, Wang Y, Huang J, Zhan L, Qi Z.
    J Cell Mol Med; 2022 Jan 31; 26(2):563-569. PubMed ID: 34910369
    [Abstract] [Full Text] [Related]

  • 27. Potentiation of arsenic trioxide-induced apoptosis by 8-bromo-7-methoxychrysin in human leukemia cells involves depletion of intracellular reduced glutathione.
    Xiao G, Tang X, Yao C, Wang C.
    Acta Biochim Biophys Sin (Shanghai); 2011 Sep 31; 43(9):712-21. PubMed ID: 21785114
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Arsenic trioxide inhibits the growth of Calu-6 cells via inducing a G2 arrest of the cell cycle and apoptosis accompanied with the depletion of GSH.
    Han YH, Kim SZ, Kim SH, Park WH.
    Cancer Lett; 2008 Oct 18; 270(1):40-55. PubMed ID: 18539383
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Characterization of molecular events in a series of bladder urothelial carcinoma cell lines with progressive resistance to arsenic trioxide.
    Hour TC, Huang CY, Lin CC, Chen J, Guan JY, Lee JM, Pu YS.
    Anticancer Drugs; 2004 Sep 18; 15(8):779-85. PubMed ID: 15494640
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Arsenic trioxide cytotoxicity in steroid and chemotherapy-resistant myeloma cell lines: enhancement of apoptosis by manipulation of cellular redox state.
    Gartenhaus RB, Prachand SN, Paniaqua M, Li Y, Gordon LI.
    Clin Cancer Res; 2002 Feb 18; 8(2):566-72. PubMed ID: 11839678
    [Abstract] [Full Text] [Related]

  • 36. Ascorbic acid enhances arsenic trioxide-induced cytotoxicity in multiple myeloma cells.
    Grad JM, Bahlis NJ, Reis I, Oshiro MM, Dalton WS, Boise LH.
    Blood; 2001 Aug 01; 98(3):805-13. PubMed ID: 11468182
    [Abstract] [Full Text] [Related]

  • 37. Arsenic trioxide-induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL.
    Liu Q, Hilsenbeck S, Gazitt Y.
    Blood; 2003 May 15; 101(10):4078-87. PubMed ID: 12531793
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.