These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


463 related items for PubMed ID: 23287468

  • 1. The mitochondrial H(+)-ATP synthase and the lipogenic switch: new core components of metabolic reprogramming in induced pluripotent stem (iPS) cells.
    Vazquez-Martin A, Corominas-Faja B, Cufi S, Vellon L, Oliveras-Ferraros C, Menendez OJ, Joven J, Lupu R, Menendez JA.
    Cell Cycle; 2013 Jan 15; 12(2):207-18. PubMed ID: 23287468
    [Abstract] [Full Text] [Related]

  • 2. Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells.
    Vazquez-Martin A, Vellon L, Quirós PM, Cufí S, Ruiz de Galarreta E, Oliveras-Ferraros C, Martin AG, Martin-Castillo B, López-Otín C, Menendez JA.
    Cell Cycle; 2012 Mar 01; 11(5):974-89. PubMed ID: 22333578
    [Abstract] [Full Text] [Related]

  • 3. Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: molecular mechanisms and therapeutic perspectives.
    Menendez JA.
    Biochim Biophys Acta; 2010 Mar 01; 1801(3):381-91. PubMed ID: 19782152
    [Abstract] [Full Text] [Related]

  • 4. The ATPase Inhibitory Factor 1 (IF1): A master regulator of energy metabolism and of cell survival.
    García-Bermúdez J, Cuezva JM.
    Biochim Biophys Acta; 2016 Aug 01; 1857(8):1167-1182. PubMed ID: 26876430
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Post-transcriptional regulation of the mitochondrial H(+)-ATP synthase: a key regulator of the metabolic phenotype in cancer.
    Willers IM, Cuezva JM.
    Biochim Biophys Acta; 2011 Jun 01; 1807(6):543-51. PubMed ID: 21035425
    [Abstract] [Full Text] [Related]

  • 9. Epstein-Barr Virus-Encoded Latent Membrane Protein 1 and B-Cell Growth Transformation Induce Lipogenesis through Fatty Acid Synthase.
    Hulse M, Johnson SM, Boyle S, Caruso LB, Tempera I.
    J Virol; 2021 Jan 28; 95(4):. PubMed ID: 33208446
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Effects of short- and long-chain fatty acids on the expression of stearoyl-CoA desaturase and other lipogenic genes in bovine mammary epithelial cells.
    Jacobs AA, Dijkstra J, Liesman JS, Vandehaar MJ, Lock AL, van Vuuren AM, Hendriks WH, van Baal J.
    Animal; 2013 Sep 28; 7(9):1508-16. PubMed ID: 23597233
    [Abstract] [Full Text] [Related]

  • 12. Nuclear reprogramming with c-Myc potentiates glycolytic capacity of derived induced pluripotent stem cells.
    Folmes CD, Martinez-Fernandez A, Faustino RS, Yamada S, Perez-Terzic C, Nelson TJ, Terzic A.
    J Cardiovasc Transl Res; 2013 Feb 28; 6(1):10-21. PubMed ID: 23247633
    [Abstract] [Full Text] [Related]

  • 13. mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging.
    Menendez JA, Vellon L, Oliveras-Ferraros C, Cufí S, Vazquez-Martin A.
    Cell Cycle; 2011 Nov 01; 10(21):3658-77. PubMed ID: 22052357
    [Abstract] [Full Text] [Related]

  • 14. mTORC2 Regulates Lipogenic Gene Expression through PPARγ to Control Lipid Synthesis in Bovine Mammary Epithelial Cells.
    Guo Z, Zhao K, Feng X, Yan D, Yao R, Chen Y, Bao L, Wang Z.
    Biomed Res Int; 2019 Nov 01; 2019():5196028. PubMed ID: 31223619
    [Abstract] [Full Text] [Related]

  • 15. Metformin-induced energy deficiency leads to the inhibition of lipogenesis in prostate cancer cells.
    Loubière C, Goiran T, Laurent K, Djabari Z, Tanti JF, Bost F.
    Oncotarget; 2015 Jun 20; 6(17):15652-61. PubMed ID: 26002551
    [Abstract] [Full Text] [Related]

  • 16. PGC1α promotes tumor growth by inducing gene expression programs supporting lipogenesis.
    Bhalla K, Hwang BJ, Dewi RE, Ou L, Twaddel W, Fang HB, Vafai SB, Vazquez F, Puigserver P, Boros L, Girnun GD.
    Cancer Res; 2011 Nov 01; 71(21):6888-98. PubMed ID: 21914785
    [Abstract] [Full Text] [Related]

  • 17. HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2.
    Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker EE, Ralser M, Cramer T, Adjaye J.
    Stem Cells; 2014 Feb 01; 32(2):364-76. PubMed ID: 24123565
    [Abstract] [Full Text] [Related]

  • 18. Acetyl-CoA carboxylase 2-/- mutant mice are protected against fatty liver under high-fat, high-carbohydrate dietary and de novo lipogenic conditions.
    Abu-Elheiga L, Wu H, Gu Z, Bressler R, Wakil SJ.
    J Biol Chem; 2012 Apr 06; 287(15):12578-88. PubMed ID: 22362781
    [Abstract] [Full Text] [Related]

  • 19. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming.
    Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A.
    Cell Metab; 2011 Aug 03; 14(2):264-71. PubMed ID: 21803296
    [Abstract] [Full Text] [Related]

  • 20. Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with "Warburg-like" cancer metabolism and L-lactate production.
    Guido C, Whitaker-Menezes D, Capparelli C, Balliet R, Lin Z, Pestell RG, Howell A, Aquila S, Andò S, Martinez-Outschoorn U, Sotgia F, Lisanti MP.
    Cell Cycle; 2012 Aug 15; 11(16):3019-35. PubMed ID: 22874531
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.