These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


132 related items for PubMed ID: 23289487

  • 1. Investigation of ethyl radical quenching by phenolics and thiols in model wine.
    Kreitman GY, Laurie VF, Elias RJ.
    J Agric Food Chem; 2013 Jan 23; 61(3):685-92. PubMed ID: 23289487
    [Abstract] [Full Text] [Related]

  • 2. A novel glutathione-hydroxycinnamic acid product generated in oxidative wine conditions.
    Bouzanquet Q, Barril C, Clark AC, Dias DA, Scollary GR.
    J Agric Food Chem; 2012 Dec 12; 60(49):12186-95. PubMed ID: 23163604
    [Abstract] [Full Text] [Related]

  • 3. Development of reliable analytical tools for evaluating the influence of reductive winemaking on the quality of Lugana wines.
    Mattivi F, Fedrizzi B, Zenato A, Tiefenthaler P, Tempesta S, Perenzoni D, Cantarella P, Simeoni F, Vrhovsek U.
    Anal Chim Acta; 2012 Jun 30; 732():194-202. PubMed ID: 22688052
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. A method to quantify quinone reaction rates with wine relevant nucleophiles: a key to the understanding of oxidative loss of varietal thiols.
    Nikolantonaki M, Waterhouse AL.
    J Agric Food Chem; 2012 Aug 29; 60(34):8484-91. PubMed ID: 22860891
    [Abstract] [Full Text] [Related]

  • 6. Beer thiol-containing compounds and redox stability: kinetic study of 1-hydroxyethyl radical scavenging ability.
    de Almeida NE, Lund MN, Andersen ML, Cardoso DR.
    J Agric Food Chem; 2013 Oct 02; 61(39):9444-52. PubMed ID: 24007263
    [Abstract] [Full Text] [Related]

  • 7. Identification of free radical intermediates in oxidized wine using electron paramagnetic resonance spin trapping.
    Elias RJ, Andersen ML, Skibsted LH, Waterhouse AL.
    J Agric Food Chem; 2009 May 27; 57(10):4359-65. PubMed ID: 19358607
    [Abstract] [Full Text] [Related]

  • 8. Innovative analysis of 3-mercaptohexan-1-ol, 3-mercaptohexylacetate and their corresponding disulfides in wine by stable isotope dilution assay and nano-liquid chromatography tandem mass spectrometry.
    Roland A, Delpech S, Dagan L, Ducasse MA, Cavelier F, Schneider R.
    J Chromatogr A; 2016 Oct 14; 1468():154-163. PubMed ID: 27688176
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Straightforward method to quantify GSH, GSSG, GRP, and hydroxycinnamic acids in wines by UPLC-MRM-MS.
    Vallverdú-Queralt A, Verbaere A, Meudec E, Cheynier V, Sommerer N.
    J Agric Food Chem; 2015 Jan 14; 63(1):142-9. PubMed ID: 25457918
    [Abstract] [Full Text] [Related]

  • 11. Production of hydroxyl radicals and their relationship with phenolic compounds in white wines.
    Márquez K, Contreras D, Salgado P, Mardones C.
    Food Chem; 2019 Jan 15; 271():80-86. PubMed ID: 30236744
    [Abstract] [Full Text] [Related]

  • 12. Measuring protection of aromatic wine thiols from oxidation by competitive reactions vs wine preservatives with ortho-quinones.
    Nikolantonaki M, Magiatis P, Waterhouse AL.
    Food Chem; 2014 Nov 15; 163():61-7. PubMed ID: 24912696
    [Abstract] [Full Text] [Related]

  • 13. Analysis of polyphenols in white wine by CZE with amperometric detection using carbon nanotube-modified electrodes.
    Moreno M, Arribas AS, Bermejo E, Zapardiel A, Chicharro M.
    Electrophoresis; 2011 Apr 15; 32(8):877-83. PubMed ID: 21394731
    [Abstract] [Full Text] [Related]

  • 14. Determination of low-molecular mass phenols in red wines: the influence of chips, staves and micro-oxygenation aging tank.
    Gallego L, Nevares I, Fernández JA, Del Álamo M.
    Food Sci Technol Int; 2011 Oct 15; 17(5):429-38. PubMed ID: 21954308
    [Abstract] [Full Text] [Related]

  • 15. Phenolic composition of champagnes from Chardonnay and Pinot Noir vintages.
    Chamkha M, Cathala B, Cheynier V, Douillard R.
    J Agric Food Chem; 2003 May 07; 51(10):3179-84. PubMed ID: 12720412
    [Abstract] [Full Text] [Related]

  • 16. Reactivity of beer bitter acids toward the 1-hydroxyethyl radical as probed by spin-trapping electron paramagnetic resonance (EPR) and electrospray ionization-tandem mass spectrometry (ESI-MS/MS).
    de Almeida NE, Homem-de-Mello P, De Keukeleire D, Cardoso DR.
    J Agric Food Chem; 2011 Apr 27; 59(8):4183-91. PubMed ID: 21401101
    [Abstract] [Full Text] [Related]

  • 17. Effect of glutathione during bottle storage of sparkling wine.
    Webber V, Dutra SV, Spinelli FR, Carnieli GJ, Cardozo A, Vanderlinde R.
    Food Chem; 2017 Feb 01; 216():254-9. PubMed ID: 27596417
    [Abstract] [Full Text] [Related]

  • 18. Effect of superoxide dismutase mimics on radical adduct formation during the reaction between peroxynitrite and thiols--an ESR-spin trapping study.
    Karoui H, Hogg N, Joseph J, Kalyanaraman B.
    Arch Biochem Biophys; 1996 Jun 01; 330(1):115-24. PubMed ID: 8651684
    [Abstract] [Full Text] [Related]

  • 19. Analysis of phenolics in wine by high performance thin-layer chromatography with gradient elution and high resolution plate imaging.
    Agatonovic-Kustrin S, Hettiarachchi CG, Morton DW, Razic S.
    J Pharm Biomed Anal; 2015 Jan 01; 102():93-9. PubMed ID: 25255450
    [Abstract] [Full Text] [Related]

  • 20. Controlling the fenton reaction in wine.
    Elias RJ, Waterhouse AL.
    J Agric Food Chem; 2010 Feb 10; 58(3):1699-707. PubMed ID: 20047324
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.