These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


485 related items for PubMed ID: 23291857

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip.
    Kim SM, Burns MA, Hasselbrink EF.
    Anal Chem; 2006 Jul 15; 78(14):4779-85. PubMed ID: 16841895
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection.
    Karuwan C, Wisitsoraat A, Maturos T, Phokharatkul D, Sappat A, Jaruwongrungsee K, Lomas T, Tuantranont A.
    Talanta; 2009 Sep 15; 79(4):995-1000. PubMed ID: 19615498
    [Abstract] [Full Text] [Related]

  • 6. Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/rhodamine B.
    Samy R, Glawdel T, Ren CL.
    Anal Chem; 2008 Jan 15; 80(2):369-75. PubMed ID: 18081260
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Bead-based immunoassays using a micro-chip flow cytometer.
    Holmes D, She JK, Roach PL, Morgan H.
    Lab Chip; 2007 Aug 15; 7(8):1048-56. PubMed ID: 17653348
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Reservoir-based dielectrophoresis for microfluidic particle separation by charge.
    Patel S, Qian S, Xuan X.
    Electrophoresis; 2013 Apr 15; 34(7):961-8. PubMed ID: 23161644
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. On-chip counting the number and the percentage of CD4+ T lymphocytes.
    Wang YN, Kang Y, Xu D, Chon CH, Barnett L, Kalams SA, Li D, Li D.
    Lab Chip; 2008 Feb 15; 8(2):309-15. PubMed ID: 18231671
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Sustainable fabrication of micro-structured lab-on-a-chip.
    Oh HJ, Park JH, Lee SJ, Kim BI, Song YS, Youn JR.
    Lab Chip; 2011 Dec 07; 11(23):3999-4005. PubMed ID: 21918762
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Surface modification of PDMS microfluidic devices by controlled sulfuric acid treatment and the application in chip electrophoresis.
    Gitlin L, Schulze P, Ohla S, Bongard HJ, Belder D.
    Electrophoresis; 2015 Feb 07; 36(3):449-56. PubMed ID: 25257973
    [Abstract] [Full Text] [Related]

  • 18. Modification of the glass surface property in PDMS-glass hybrid microfluidic devices.
    Kaneda S, Ono K, Fukuba T, Nojima T, Yamamoto T, Fujii T.
    Anal Sci; 2012 Feb 07; 28(1):39-44. PubMed ID: 22232222
    [Abstract] [Full Text] [Related]

  • 19. Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs.
    Yu L, Li CM, Liu Y, Gao J, Wang W, Gan Y.
    Lab Chip; 2009 May 07; 9(9):1243-7. PubMed ID: 19370243
    [Abstract] [Full Text] [Related]

  • 20. Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding.
    Díaz-González M, Baldi A.
    Anal Chem; 2012 Sep 18; 84(18):7838-44. PubMed ID: 22905798
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.