These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
504 related items for PubMed ID: 23297881
1. Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas. Lin YT, McMahon KG, Lynch JF, Siegmann WL. J Acoust Soc Am; 2013 Jan; 133(1):37-49. PubMed ID: 23297881 [Abstract] [Full Text] [Related]
2. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range. Duda TF, Lin YT, Reeder DB. J Acoust Soc Am; 2011 Sep; 130(3):1173-87. PubMed ID: 21895060 [Abstract] [Full Text] [Related]
3. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves. Badiey M, Katsnelson BG, Lin YT, Lynch JF. J Acoust Soc Am; 2011 Apr; 129(4):EL141-7. PubMed ID: 21476621 [Abstract] [Full Text] [Related]
4. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves. Colosi JA. J Acoust Soc Am; 2008 Sep; 124(3):1452-64. PubMed ID: 19045637 [Abstract] [Full Text] [Related]
6. Acoustic mode radiation from the termination of a truncated nonlinear internal gravity wave duct in a shallow ocean area. Lin YT, Duda TF, Lynch JF. J Acoust Soc Am; 2009 Oct; 126(4):1752-65. PubMed ID: 19813790 [Abstract] [Full Text] [Related]
7. Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves. Gong Z, Chen T, Ratilal P, Makris NC. J Acoust Soc Am; 2013 Nov; 134(5):3476-85. PubMed ID: 24180758 [Abstract] [Full Text] [Related]
8. Observation of sound focusing and defocusing due to propagating nonlinear internal waves. Luo J, Badiey M, Karjadi EA, Katsnelson B, Tskhoidze A, Lynch JF, Moum JN. J Acoust Soc Am; 2008 Sep; 124(3):EL66-72. PubMed ID: 19045564 [Abstract] [Full Text] [Related]
9. A stochastic response surface formulation for the description of acoustic propagation through an uncertain internal wave field. Gerdes F, Finette S. J Acoust Soc Am; 2012 Oct; 132(4):2251-64. PubMed ID: 23039422 [Abstract] [Full Text] [Related]
10. Enhanced acoustic mode coupling resulting from an internal solitary wave approaching the shelfbreak in the South China Sea. Chiu LY, Reeder DB, Chang YY, Chen CF, Chiu CS, Lynch JF. J Acoust Soc Am; 2013 Mar; 133(3):1306-19. PubMed ID: 23464003 [Abstract] [Full Text] [Related]
11. Coherent reflection from surface gravity water waves during reciprocal acoustic transmissions. Badiey M, Song A, Smith KB. J Acoust Soc Am; 2012 Oct; 132(4):EL290-5. PubMed ID: 23039567 [Abstract] [Full Text] [Related]
17. Elastic parabolic equation solutions for underwater acoustic problems using seismic sources. Frank SD, Odom RI, Collis JM. J Acoust Soc Am; 2013 Mar; 133(3):1358-67. PubMed ID: 23464007 [Abstract] [Full Text] [Related]
18. Parabolic equation modeling of high frequency acoustic transmission with an evolving sea surface. Senne J, Song A, Badiey M, Smith KB. J Acoust Soc Am; 2012 Sep; 132(3):1311-8. PubMed ID: 22978859 [Abstract] [Full Text] [Related]