These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 2329826

  • 21. Deleterious effects of cardiopulmonary bypass on early graft function after single lung allotransplantation: evaluation of a heparin-coated bypass circuit.
    Francalancia NA, Aeba R, Yousem SA, Griffith BP, Marrone GC.
    J Heart Lung Transplant; 1994; 13(3):498-507. PubMed ID: 8061027
    [Abstract] [Full Text] [Related]

  • 22. Effects of leukocyte-depleted reoxygenation on endothelial and ventricular function: with observation of a short time period.
    Sakamoto Y, Wei LH, Buckberg GD, Youg HH.
    Ann Thorac Cardiovasc Surg; 2002 Dec; 8(6):343-9. PubMed ID: 12517293
    [Abstract] [Full Text] [Related]

  • 23. In-line leukocyte filtration during bypass. Clinical results from a randomized prospective trial.
    Lust RM, Bode AP, Yang L, Hodges W, Chitwood WR.
    ASAIO J; 1996 Dec; 42(5):M819-22. PubMed ID: 8944997
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Increased production of peroxidation products associated with cardiac operations. Evidence for free radical generation.
    Royston D, Fleming JS, Desai JB, Westaby S, Taylor KM.
    J Thorac Cardiovasc Surg; 1986 May; 91(5):759-66. PubMed ID: 3702483
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. The effect of body temperature on leukocyte kinetics during cardiopulmonary bypass.
    Quiroga MM, Miyagishima R, Haendschen LC, Glovsky M, Martin BA, Hogg JC.
    J Thorac Cardiovasc Surg; 1985 Jul; 90(1):91-6. PubMed ID: 3874325
    [Abstract] [Full Text] [Related]

  • 28. Deleterious effects of cardiopulmonary bypass. A prospective study of bubble versus membrane oxygenation.
    van Oeveren W, Kazatchkine MD, Descamps-Latscha B, Maillet F, Fischer E, Carpentier A, Wildevuur CR.
    J Thorac Cardiovasc Surg; 1985 Jun; 89(6):888-99. PubMed ID: 3158783
    [Abstract] [Full Text] [Related]

  • 29. The role of leukocyte depletion in reducing injury to myocardium and lung during cardiopulmonary bypass.
    Hachida M, Hanayama N, Okamura T, Akasawa T, Maeda T, Bonkohara Y, Endo M, Hashimoto A, Koyanagi H.
    ASAIO J; 1995 Jun; 41(3):M291-4. PubMed ID: 8573809
    [Abstract] [Full Text] [Related]

  • 30. Increased matrix metalloproteinase activity after canine cardiopulmonary bypass is suppressed by a nitric oxide scavenger.
    Mayers I, Hurst T, Radomski A, Johnson D, Fricker S, Bridger G, Cameron B, Darkes M, Radomski MW.
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):661-8. PubMed ID: 12658210
    [Abstract] [Full Text] [Related]

  • 31. Leukocyte filtration improves brain protection after a prolonged period of hypothermic circulatory arrest: A study in a chronic porcine model.
    Rimpiläinen J, Pokela M, Kiviluoma K, Anttila V, Vainionpää V, Hirvonen J, Ohtonen P, Mennander A, Remes E, Juvonen T.
    J Thorac Cardiovasc Surg; 2000 Dec; 120(6):1131-41. PubMed ID: 11088037
    [Abstract] [Full Text] [Related]

  • 32. Effect of leukocyte depletion on endothelial cell activation and transendothelial migration of leukocytes during cardiopulmonary bypass.
    Chen YF, Tsai WC, Lin CC, Tsai LY, Lee CS, Huang CH, Pan PC, Chen ML.
    Ann Thorac Surg; 2004 Aug; 78(2):634-42; discussion 642-3. PubMed ID: 15276536
    [Abstract] [Full Text] [Related]

  • 33. Leukocyte filtration to decrease the number of adherent leukocytes in the cerebral microcirculation after a period of deep hypothermic circulatory arrest.
    Alaoja H, Niemelä E, Anttila V, Dahlbacka S, Mäkelä J, Kiviluoma K, Laurila P, Kaakinen T, Juvonen T.
    J Thorac Cardiovasc Surg; 2006 Dec; 132(6):1339-47. PubMed ID: 17140952
    [Abstract] [Full Text] [Related]

  • 34. Prevention of the hypoxic reoxygenation injury with the use of a leukocyte-depleting filter.
    Bolling KS, Halldorsson A, Allen BS, Rahman S, Wang T, Kronon M, Feinberg H.
    J Thorac Cardiovasc Surg; 1997 Jun; 113(6):1081-9; discussion 1089-90. PubMed ID: 9202689
    [Abstract] [Full Text] [Related]

  • 35. Total liquid ventilation reduces lung injury in piglets after cardiopulmonary bypass.
    Jiang L, Wang Q, Liu Y, Du M, Shen X, Guo X, Wu S.
    Ann Thorac Surg; 2006 Jul; 82(1):124-30. PubMed ID: 16798202
    [Abstract] [Full Text] [Related]

  • 36. Deferoxamine reduces neutrophil-mediated free radical production during cardiopulmonary bypass in man.
    Menasché P, Pasquier C, Bellucci S, Lorente P, Jaillon P, Piwnica A.
    J Thorac Cardiovasc Surg; 1988 Oct; 96(4):582-9. PubMed ID: 2845199
    [Abstract] [Full Text] [Related]

  • 37. Systemic complement activation and acute lung injury.
    Till GO, Ward PA.
    Fed Proc; 1986 Jan; 45(1):13-8. PubMed ID: 3940902
    [Abstract] [Full Text] [Related]

  • 38. Role of poly(ADP-ribose) polymerase activation in the pathogenesis of cardiopulmonary dysfunction in a canine model of cardiopulmonary bypass.
    Szabó G, Soós P, Bährle S, Zsengellér Z, Flechtenmacher C, Hagl S, Szabó C.
    Eur J Cardiothorac Surg; 2004 May; 25(5):825-32. PubMed ID: 15082289
    [Abstract] [Full Text] [Related]

  • 39. Leucocyte depletion and prevention of reperfusion injury during cardiopulmonary bypass: a clinical study.
    Chiba Y, Muraoka R, Ihaya A, Morioka K, Sasaki M, Uesaka T.
    Cardiovasc Surg; 1993 Aug; 1(4):350-6. PubMed ID: 8076058
    [Abstract] [Full Text] [Related]

  • 40. Lung transplant reperfusion injury involves pulmonary macrophages and circulating leukocytes in a biphasic response.
    Fiser SM, Tribble CG, Long SM, Kaza AK, Cope JT, Laubach VE, Kern JA, Kron IL.
    J Thorac Cardiovasc Surg; 2001 Jun; 121(6):1069-75. PubMed ID: 11385373
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.