These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus. Li F, Ren S, Zhang W, Xu Z, Xie G, Chen Y, Tu Y, Li Q, Zhou S, Li Y, Tu F, Liu L, Wang Y, Jiang J, Qin J, Li S, Li Q, Jing HC, Zhou F, Gutterson N, Peng L. Bioresour Technol; 2013 Feb; 130():629-37. PubMed ID: 23334020 [Abstract] [Full Text] [Related]
3. Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Si S, Chen Y, Fan C, Hu H, Li Y, Huang J, Liao H, Hao B, Li Q, Peng L, Tu Y. Bioresour Technol; 2015 May; 183():248-54. PubMed ID: 25746301 [Abstract] [Full Text] [Related]
4. Ammonium oxalate-extractable uronic acids positively affect biomass enzymatic digestibility by reducing lignocellulose crystallinity in Miscanthus. Wang Y, Huang J, Li Y, Xiong K, Wang Y, Li F, Liu M, Wu Z, Tu Y, Peng L. Bioresour Technol; 2015 Nov; 196():391-8. PubMed ID: 26257050 [Abstract] [Full Text] [Related]
5. Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Xu N, Zhang W, Ren S, Liu F, Zhao C, Liao H, Xu Z, Huang J, Li Q, Tu Y, Yu B, Wang Y, Jiang J, Qin J, Peng L. Biotechnol Biofuels; 2012 Aug 11; 5(1):58. PubMed ID: 22883929 [Abstract] [Full Text] [Related]
6. Distinct Geographical Distribution of the Miscanthus Accessions with Varied Biomass Enzymatic Saccharification. Li X, Liao H, Fan C, Hu H, Li Y, Li J, Yi Z, Cai X, Peng L, Tu Y. PLoS One; 2016 Aug 11; 11(8):e0160026. PubMed ID: 27532636 [Abstract] [Full Text] [Related]
7. Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse. Li M, Feng S, Wu L, Li Y, Fan C, Zhang R, Zou W, Tu Y, Jing HC, Li S, Peng L. Bioresour Technol; 2014 Sep 11; 167():14-23. PubMed ID: 24968107 [Abstract] [Full Text] [Related]
8. G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed. Pei Y, Li Y, Zhang Y, Yu C, Fu T, Zou J, Tu Y, Peng L, Chen P. Bioresour Technol; 2016 Mar 11; 203():325-33. PubMed ID: 26748046 [Abstract] [Full Text] [Related]
9. A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy Miscanthus. Alam A, Zhang R, Liu P, Huang J, Wang Y, Hu Z, Madadi M, Sun D, Hu R, Ragauskas AJ, Tu Y, Peng L. Biotechnol Biofuels; 2019 Mar 11; 12():99. PubMed ID: 31057665 [Abstract] [Full Text] [Related]
10. The correlation between cellulose allomorphs (I and II) and conversion after removal of hemicellulose and lignin of lignocellulose. Song Y, Zhang J, Zhang X, Tan T. Bioresour Technol; 2015 Oct 11; 193():164-70. PubMed ID: 26133473 [Abstract] [Full Text] [Related]
11. Miscanthus accessions distinctively accumulate cadmium for largely enhanced biomass enzymatic saccharification by increasing hemicellulose and pectin and reducing cellulose CrI and DP. Cheng S, Yu H, Hu M, Wu Y, Cheng L, Cai Q, Tu Y, Xia T, Peng L. Bioresour Technol; 2018 Sep 11; 263():67-74. PubMed ID: 29730520 [Abstract] [Full Text] [Related]
12. Alkali-based pretreatments distinctively extract lignin and pectin for enhancing biomass saccharification by altering cellulose features in sugar-rich Jerusalem artichoke stem. Li M, Wang J, Yang Y, Xie G. Bioresour Technol; 2016 May 11; 208():31-41. PubMed ID: 26918836 [Abstract] [Full Text] [Related]
13. Comparison of the effects of different pretreatments on the structure and enzymatic hydrolysis of Miscanthus. Dai Y, Hu B, Yang Q, Nie L, Sun D. Biotechnol Appl Biochem; 2022 Apr 11; 69(2):548-557. PubMed ID: 33608903 [Abstract] [Full Text] [Related]
15. Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants. Wu Z, Zhang M, Wang L, Tu Y, Zhang J, Xie G, Zou W, Li F, Guo K, Li Q, Gao C, Peng L. Biotechnol Biofuels; 2013 Dec 16; 6(1):183. PubMed ID: 24341349 [Abstract] [Full Text] [Related]
16. Down-regulation of OsMYB103L distinctively alters beta-1,4-glucan polymerization and cellulose microfibers assembly for enhanced biomass enzymatic saccharification in rice. Wu L, Zhang M, Zhang R, Yu H, Wang H, Li J, Wang Y, Hu Z, Wang Y, Luo Z, Li L, Wang L, Peng L, Xia T. Biotechnol Biofuels; 2021 Dec 27; 14(1):245. PubMed ID: 34961560 [Abstract] [Full Text] [Related]
17. Miscanthus as cellulosic biomass for bioethanol production. Lee WC, Kuan WC. Biotechnol J; 2015 Jun 27; 10(6):840-54. PubMed ID: 26013948 [Abstract] [Full Text] [Related]
19. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Wang Y, Fan C, Hu H, Li Y, Sun D, Wang Y, Peng L. Biotechnol Adv; 2016 Jun 27; 34(5):997-1017. PubMed ID: 27269671 [Abstract] [Full Text] [Related]
20. Biomass enzymatic saccharification is determined by the non-KOH-extractable wall polymer features that predominately affect cellulose crystallinity in corn. Jia J, Yu B, Wu L, Wang H, Wu Z, Li M, Huang P, Feng S, Chen P, Zheng Y, Peng L. PLoS One; 2014 Jun 27; 9(9):e108449. PubMed ID: 25251456 [Abstract] [Full Text] [Related] Page: [Next] [New Search]