These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
179 related items for PubMed ID: 23299324
21. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L. Plant Physiol; 2004 May; 135(1):279-86. PubMed ID: 15122018 [Abstract] [Full Text] [Related]
22. Gravitropic plant growth regulation and ethylene: an unsought cardinal coordinate for a disused model. Edelmann HG, Roth U. Protoplasma; 2006 Dec; 229(2-4):183-91. PubMed ID: 17180500 [Abstract] [Full Text] [Related]
23. A Novel Protocol for Detection of Nitric Oxide in Plants. Jain P, David A, Bhatla SC. Methods Mol Biol; 2016 Dec; 1424():69-79. PubMed ID: 27094412 [Abstract] [Full Text] [Related]
24. Phytochrome B inhibits darkness-induced hypocotyl adventitious root formation by stabilizing IAA14 and suppressing ARF7 and ARF19. Li QQ, Zhang Z, Wang YL, Zhong LY, Chao ZF, Gao YQ, Han ML, Xu L, Chao DY. Plant J; 2021 Mar; 105(6):1689-1702. PubMed ID: 33354819 [Abstract] [Full Text] [Related]
25. Sodium chloride stress induces nitric oxide accumulation in root tips and oil body surface accompanying slower oleosin degradation in sunflower seedlings. David A, Yadav S, Bhatla SC. Physiol Plant; 2010 Dec; 140(4):342-54. PubMed ID: 20738803 [Abstract] [Full Text] [Related]
27. Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G, Bellini C. Plant Cell; 2005 May; 17(5):1343-59. PubMed ID: 15829601 [Abstract] [Full Text] [Related]
28. Hydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis. Cao Z, Duan X, Yao P, Cui W, Cheng D, Zhang J, Jin Q, Chen J, Dai T, Shen W. Int J Mol Sci; 2017 Oct 03; 18(10):. PubMed ID: 28972563 [Abstract] [Full Text] [Related]
29. The interaction of light quality and irradiance with gibberellins, cytokinins and auxin in regulating growth of Helianthus annuus hypocotyls. Kurepin LV, Emery RJ, Pharis RP, Reid DM. Plant Cell Environ; 2007 Feb 03; 30(2):147-55. PubMed ID: 17238906 [Abstract] [Full Text] [Related]
30. Methane-rich water induces cucumber adventitious rooting through heme oxygenase1/carbon monoxide and Ca(2+) pathways. Cui W, Qi F, Zhang Y, Cao H, Zhang J, Wang R, Shen W. Plant Cell Rep; 2015 Mar 03; 34(3):435-45. PubMed ID: 25503851 [Abstract] [Full Text] [Related]
33. The role of auxin transporters and receptors in adventitious rooting of Arabidopsis thaliana pre-etiolated flooded seedlings. da Costa CT, Offringa R, Fett-Neto AG. Plant Sci; 2020 Jan 03; 290():110294. PubMed ID: 31779904 [Abstract] [Full Text] [Related]
36. Origin, timing, and gene expression profile of adventitious rooting in Arabidopsis hypocotyls and stems. Welander M, Geier T, Smolka A, Ahlman A, Fan J, Zhu LH. Am J Bot; 2014 Feb 03; 101(2):255-66. PubMed ID: 24500805 [Abstract] [Full Text] [Related]
37. Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling. Qi X, Li Q, Ma X, Qian C, Wang H, Ren N, Shen C, Huang S, Xu X, Xu Q, Chen X. Plant Cell Environ; 2019 May 03; 42(5):1458-1470. PubMed ID: 30556134 [Abstract] [Full Text] [Related]