These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
250 related items for PubMed ID: 23306120
1. Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media. Kridelbaugh DM, Nelson J, Engle NL, Tschaplinski TJ, Graham DE. Bioresour Technol; 2013 Feb; 130():125-35. PubMed ID: 23306120 [Abstract] [Full Text] [Related]
2. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Stevenson DM, Weimer PJ. Appl Environ Microbiol; 2005 Aug; 71(8):4672-8. PubMed ID: 16085862 [Abstract] [Full Text] [Related]
3. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Papanek B, Biswas R, Rydzak T, Guss AM. Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438 [Abstract] [Full Text] [Related]
4. Testing alternative kinetic models for utilization of crystalline cellulose (Avicel) by batch cultures of Clostridium thermocellum. Holwerda EK, Lynd LR. Biotechnol Bioeng; 2013 Sep; 110(9):2389-94. PubMed ID: 23568291 [Abstract] [Full Text] [Related]
5. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆. Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli D, Puri M. Bioresour Technol; 2018 Feb; 250():860-867. PubMed ID: 30001594 [Abstract] [Full Text] [Related]
6. Immobilized anaerobic fermentation for bio-fuel production by Clostridium co-culture. Xu L, Tschirner U. Bioprocess Biosyst Eng; 2014 Aug; 37(8):1551-9. PubMed ID: 24488259 [Abstract] [Full Text] [Related]
7. Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate. Li HF, Knutson BL, Nokes SE, Lynn BC, Flythe MD. Appl Microbiol Biotechnol; 2012 Feb; 93(4):1777-84. PubMed ID: 22218768 [Abstract] [Full Text] [Related]
8. Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405. Islam R, Cicek N, Sparling R, Levin D. Appl Microbiol Biotechnol; 2009 Feb; 82(1):141-8. PubMed ID: 18998122 [Abstract] [Full Text] [Related]
9. Investigation of the metabolic inhibition observed in solid-substrate cultivation of Clostridium thermocellum on cellulose. Dharmagadda VS, Nokes SE, Strobel HJ, Flythe MD. Bioresour Technol; 2010 Aug; 101(15):6039-44. PubMed ID: 20362436 [Abstract] [Full Text] [Related]
10. Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose. Burton E, Martin VJ. Can J Microbiol; 2012 Dec; 58(12):1378-88. PubMed ID: 23210995 [Abstract] [Full Text] [Related]
13. Cross-feeding and wheat straw extractives enhance growth of Clostridium thermocellum-containing co-cultures for consolidated bioprocessing. Froese AG, Sparling R. Bioprocess Biosyst Eng; 2021 Apr; 44(4):819-830. PubMed ID: 33392746 [Abstract] [Full Text] [Related]
14. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR. PLoS One; 2009 Apr; 4(4):e5271. PubMed ID: 19384422 [Abstract] [Full Text] [Related]
15. Continuous hydrogen production during fermentation of alpha-cellulose by the thermophillic bacterium Clostridium thermocellum. Magnusson L, Cicek N, Sparling R, Levin D. Biotechnol Bioeng; 2009 Feb 15; 102(3):759-66. PubMed ID: 18828175 [Abstract] [Full Text] [Related]
16. Determination of the cellulase activity distribution in Clostridium thermocellum and Caldicellulosiruptor obsidiansis cultures using a fluorescent substrate. Morrell-Falvey JL, Elkins JG, Wang ZW. J Environ Sci (China); 2015 Aug 01; 34():212-8. PubMed ID: 26257364 [Abstract] [Full Text] [Related]
17. Optimization of influential nutrients during direct cellulose fermentation into hydrogen by Clostridium thermocellum. Islam R, Sparling R, Cicek N, Levin DB. Int J Mol Sci; 2015 Jan 30; 16(2):3116-32. PubMed ID: 25647413 [Abstract] [Full Text] [Related]
18. [Cellulose degradation and ethanol production of different Clostridium strain]. Fang ZG, Ouyang ZY. Huan Jing Ke Xue; 2010 Aug 30; 31(8):1926-31. PubMed ID: 21090315 [Abstract] [Full Text] [Related]
19. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. Raman B, McKeown CK, Rodriguez M, Brown SD, Mielenz JR. BMC Microbiol; 2011 Jun 14; 11():134. PubMed ID: 21672225 [Abstract] [Full Text] [Related]
20. Production of ethanol from cellulosic biomass by Clostridium thermocellum SS19 in submerged fermentation: screening of nutrients using Plackett-Burman design. Balusu R, Paduru RM, Seenayya G, Reddy G. Appl Biochem Biotechnol; 2004 Jun 14; 117(3):133-41. PubMed ID: 15304765 [Abstract] [Full Text] [Related] Page: [Next] [New Search]