These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


191 related items for PubMed ID: 23307949

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Contributions to the understanding of gait control.
    Simonsen EB.
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Motor modules during adaptation to walking in a powered ankle exoskeleton.
    Jacobs DA, Koller JR, Steele KM, Ferris DP.
    J Neuroeng Rehabil; 2018 Jan 03; 15(1):2. PubMed ID: 29298705
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking.
    Kao PC, Lewis CL, Ferris DP.
    J Biomech; 2010 May 07; 43(7):1401-7. PubMed ID: 20171638
    [Abstract] [Full Text] [Related]

  • 9. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR, Jacobs DA, Ferris DP, Remy CD.
    J Neuroeng Rehabil; 2015 Nov 04; 12():97. PubMed ID: 26536868
    [Abstract] [Full Text] [Related]

  • 10. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns].
    Wang W, Ding J, Wang Y, Liu Y, Zhang J, Liu J.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb 25; 39(1):75-83. PubMed ID: 35231968
    [Abstract] [Full Text] [Related]

  • 11. Locomotor adaptation to a powered ankle-foot orthosis depends on control method.
    Cain SM, Gordon KE, Ferris DP.
    J Neuroeng Rehabil; 2007 Dec 21; 4():48. PubMed ID: 18154649
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Mechanics and energetics of level walking with powered ankle exoskeletons.
    Sawicki GS, Ferris DP.
    J Exp Biol; 2008 May 21; 211(Pt 9):1402-13. PubMed ID: 18424674
    [Abstract] [Full Text] [Related]

  • 14. Robust Torque Predictions From Electromyography Across Multiple Levels of Active Exoskeleton Assistance Despite Non-linear Reorganization of Locomotor Output.
    George JA, Gunnell AJ, Archangeli D, Hunt G, Ishmael M, Foreman KB, Lenzi T.
    Front Neurorobot; 2021 May 21; 15():700823. PubMed ID: 34803646
    [Abstract] [Full Text] [Related]

  • 15. Individuals differ in muscle activation patterns during early adaptation to a powered ankle exoskeleton.
    Acosta-Sojo Y, Stirling L.
    Appl Ergon; 2022 Jan 21; 98():103593. PubMed ID: 34600306
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Motor adaptation during dorsiflexion-assisted walking with a powered orthosis.
    Kao PC, Ferris DP.
    Gait Posture; 2009 Feb 21; 29(2):230-6. PubMed ID: 18838269
    [Abstract] [Full Text] [Related]

  • 18. Mechanics and energetics of incline walking with robotic ankle exoskeletons.
    Sawicki GS, Ferris DP.
    J Exp Biol; 2009 Jan 21; 212(Pt 1):32-41. PubMed ID: 19088208
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.