These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
426 related items for PubMed ID: 23313143
1. The upregulation of dihydropyrimidine dehydrogenase in liver is involved in acquired resistance to 5-fluorouracil. Li LH, Dong H, Zhao F, Tang J, Chen X, Ding J, Men HT, Luo WX, Du Y, Ge J, Tan BX, Cao D, Liu JY. Eur J Cancer; 2013 May; 49(7):1752-60. PubMed ID: 23313143 [Abstract] [Full Text] [Related]
2. Correlation between chemosensitivity and mRNA expression level of 5-fluorouracil-related metabolic enzymes during liver metastasis of colorectal cancer. Okumura K, Shiomi H, Mekata E, Kaizuka M, Endo Y, Kurumi Y, Tani T. Oncol Rep; 2006 Apr; 15(4):875-82. PubMed ID: 16525674 [Abstract] [Full Text] [Related]
3. Enhanced 5-fluorouracil cytotoxicity in high cyclooxygenase-2 expressing colorectal cancer cells and xenografts induced by non-steroidal anti-inflammatory drugs via downregulation of dihydropyrimidine dehydrogenase. Réti A, Pap E, Adleff V, Jeney A, Kralovánszky J, Budai B. Cancer Chemother Pharmacol; 2010 Jul; 66(2):219-27. PubMed ID: 19830428 [Abstract] [Full Text] [Related]
4. Dihydropyrimidine dehydrogenase but not thymidylate synthase expression is associated with resistance to 5-fluorouracil in colorectal cancer. Nita ME, Tominaga O, Nagawa H, Tsuruo T, Muto T. Hepatogastroenterology; 1998 Jul; 45(24):2117-22. PubMed ID: 9951876 [Abstract] [Full Text] [Related]
5. The significance of the expression of dihydropyrimidine dehydrogenase in prostate cancer. Li Y, Mizutani Y, Shiraishi T, Nakamura T, Mikami K, Takaha N, Okihara K, Kawauchi A, Sakai T, Miki T. BJU Int; 2007 Mar; 99(3):663-8. PubMed ID: 17092280 [Abstract] [Full Text] [Related]
7. Predicting 5-fluorouracil chemosensitivity of liver metastases from colorectal cancer using primary tumor specimens: three-gene expression model predicts clinical response. Matsuyama R, Togo S, Shimizu D, Momiyama N, Ishikawa T, Ichikawa Y, Endo I, Kunisaki C, Suzuki H, Hayasizaki Y, Shimada H. Int J Cancer; 2006 Jul 15; 119(2):406-13. PubMed ID: 16477629 [Abstract] [Full Text] [Related]
8. Gene expression profile of 5-fluorouracil metabolic enzymes in primary colorectal cancer: potential as predictive parameters for response to fluorouracil-based chemotherapy. Kinoshita M, Kodera Y, Hibi K, Nakayama G, Inoue T, Ohashi N, Ito Y, Koike M, Fujiwara M, Nakao A. Anticancer Res; 2007 Jul 15; 27(2):851-6. PubMed ID: 17465211 [Abstract] [Full Text] [Related]
10. Thymidylate synthase, dihydropyrimidine dehydrogenase and thymidine phosphorylase expression in colorectal cancer and normal mucosa in patients. Amatori F, Di Paolo A, Del Tacca M, Fontanini G, Vannozzi F, Boldrini L, Bocci G, Lastella M, Danesi R. Pharmacogenet Genomics; 2006 Nov 15; 16(11):809-16. PubMed ID: 17047489 [Abstract] [Full Text] [Related]
13. Sequence analysis of the 5'-flanking regions of human dihydropyrimidine dehydrogenase gene: identification of a new polymorphism related with effects of 5-fluorouracil. Hasegawa T, Kim HS, Fukushima M, Wataya Y. Nucleosides Nucleotides Nucleic Acids; 2005 Nov 15; 24(4):233-42. PubMed ID: 16021908 [Abstract] [Full Text] [Related]
14. Potential of dihydropyrimidine dehydrogenase genotypes in personalizing 5-fluorouracil therapy among colorectal cancer patients. Teh LK, Hamzah S, Hashim H, Bannur Z, Zakaria ZA, Hasbullani Z, Shia JK, Fijeraid H, Md Nor A, Zailani M, Ramasamy P, Ngow H, Sood S, Salleh MZ. Ther Drug Monit; 2013 Oct 15; 35(5):624-30. PubMed ID: 23942539 [Abstract] [Full Text] [Related]
15. Up-regulation in dihydropyrimidine dehydrogenase activity by raltitrexed causes antagonism in combination with 5-fluorouracil. Nozoe Y, Ogata Y, Araki Y, Sasatomi T, Fukumori H, Shirouzu K. Anticancer Res; 2003 Oct 15; 23(6C):4663-9. PubMed ID: 14981911 [Abstract] [Full Text] [Related]
17. The role of thymidylate synthase and dihydropyrimidine dehydrogenase in resistance to 5-fluorouracil in human lung cancer cells. Oguri T, Achiwa H, Bessho Y, Muramatsu H, Maeda H, Niimi T, Sato S, Ueda R. Lung Cancer; 2005 Sep 15; 49(3):345-51. PubMed ID: 15993511 [Abstract] [Full Text] [Related]
18. Combined therapy with a thymidylate synthase-inhibiting vector and S-1 has effective antitumor activity against 5-FU-resistant tumors. Kadota K, Huang CL, Liu D, Yokomise H, Haba R, Wada H. Int J Oncol; 2011 Feb 15; 38(2):355-63. PubMed ID: 21174056 [Abstract] [Full Text] [Related]
19. Development of new promising antimetabolite, DFP-11207 with self-controlled toxicity in rodents. Fukushima M, Iizuka K, Jin C, Zhang C, Hong M, Eshima K. Drug Des Devel Ther; 2017 Feb 15; 11():1693-1705. PubMed ID: 28652707 [Abstract] [Full Text] [Related]
20. Thymidylate synthase and dihydropyrimidine dehydrogenase gene expression in breast cancer predicts 5-FU sensitivity by a histocultural drug sensitivity test. Kakimoto M, Uetake H, Osanai T, Shirota Y, Takagi Y, Takeshita E, Toriya Y, Danenberg K, Danenberg PV, Sugihara K. Cancer Lett; 2005 Jun 01; 223(1):103-11. PubMed ID: 15890242 [Abstract] [Full Text] [Related] Page: [Next] [New Search]