These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Bone marrow mesenchymal stem cells and electroacupuncture downregulate the inhibitor molecules and promote the axonal regeneration in the transected spinal cord of rats. Ding Y, Yan Q, Ruan JW, Zhang YQ, Li WJ, Zeng X, Huang SF, Zhang YJ, Wang S, Dong H, Zeng YS. Cell Transplant; 2011 Aug 20; 20(4):475-91. PubMed ID: 20887664 [Abstract] [Full Text] [Related]
8. Electroacupuncture promotes the differentiation of transplanted bone marrow mesenchymal stem cells overexpressing TrkC into neuron-like cells in transected spinal cord of rats. Ding Y, Yan Q, Ruan JW, Zhang YQ, Li WJ, Zeng X, Huang SF, Zhang YJ, Wu JL, Fisher D, Dong H, Zeng YS. Cell Transplant; 2013 Aug 20; 22(1):65-86. PubMed ID: 23006476 [Abstract] [Full Text] [Related]
9. DHAM-BMSC matrix promotes axonal regeneration and functional recovery after spinal cord injury in adult rats. Liang H, Liang P, Xu Y, Wu J, Liang T, Xu X. J Neurotrauma; 2009 Oct 20; 26(10):1745-57. PubMed ID: 19413502 [Abstract] [Full Text] [Related]
11. Fibrin scaffolds containing ectomesenchymal stem cells enhance behavioral and histological improvement in a rat model of spinal cord injury. Liu J, Chen Q, Zhang Z, Zheng Y, Sun X, Cao X, Gong A, Cui Y, He Q, Jiang P. Cells Tissues Organs; 2013 Oct 20; 198(1):35-46. PubMed ID: 23774080 [Abstract] [Full Text] [Related]
12. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord. Xia L, Wan H, Hao SY, Li DZ, Chen G, Gao CC, Li JH, Yang F, Wang SG, Liu S. Chin Med J (Engl); 2013 Mar 20; 126(5):909-17. PubMed ID: 23489801 [Abstract] [Full Text] [Related]
14. Multichannel polymer scaffold seeded with activated Schwann cells and bone mesenchymal stem cells improves axonal regeneration and functional recovery after rat spinal cord injury. Yang EZ, Zhang GW, Xu JG, Chen S, Wang H, Cao LL, Liang B, Lian XF. Acta Pharmacol Sin; 2017 May 20; 38(5):623-637. PubMed ID: 28392569 [Abstract] [Full Text] [Related]
15. Implantation of adult bone marrow-derived mesenchymal stem cells transfected with the neurotrophin-3 gene and pretreated with retinoic acid in completely transected spinal cord. Zhang W, Yan Q, Zeng YS, Zhang XB, Xiong Y, Wang JM, Chen SJ, Li Y, Bruce IC, Wu W. Brain Res; 2010 Nov 04; 1359():256-71. PubMed ID: 20816761 [Abstract] [Full Text] [Related]
16. The hetero-transplantation of human bone marrow stromal cells carried by hydrogel unexpectedly demonstrates a significant role in the functional recovery in the injured spinal cord of rats. Raynald, Li Y, Yu H, Huang H, Guo M, Hua R, Jiang F, Zhang K, Li H, Wang F, Li L, Cui F, An Y. Brain Res; 2016 Mar 01; 1634():21-33. PubMed ID: 26523673 [Abstract] [Full Text] [Related]
17. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats. Okuda A, Horii-Hayashi N, Sasagawa T, Shimizu T, Shigematsu H, Iwata E, Morimoto Y, Masuda K, Koizumi M, Akahane M, Nishi M, Tanaka Y. J Neurosurg Spine; 2017 Mar 01; 26(3):388-395. PubMed ID: 27885959 [Abstract] [Full Text] [Related]
18. Bone marrow-derived mesenchymal stem cell transplantation for chronic spinal cord injury in rats: comparative study between intralesional and intravenous transplantation. Kim JW, Ha KY, Molon JN, Kim YH. Spine (Phila Pa 1976); 2013 Aug 01; 38(17):E1065-74. PubMed ID: 23629485 [Abstract] [Full Text] [Related]