These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
296 related items for PubMed ID: 23318109
1. The biomechanics of a multilevel lumbar spine hybrid using nucleus replacement in conjunction with fusion. Dahl MC, Ellingson AM, Mehta HP, Huelman JH, Nuckley DJ. Spine J; 2013 Feb; 13(2):175-83. PubMed ID: 23318109 [Abstract] [Full Text] [Related]
6. The protective role of dynamic stabilization on the adjacent disc to a rigid instrumented level. An in vitro biomechanical analysis. Cabello J, Cavanilles-Walker JM, Iborra M, Ubierna MT, Covaro A, Roca J. Arch Orthop Trauma Surg; 2013 Apr; 133(4):443-8. PubMed ID: 23371399 [Abstract] [Full Text] [Related]
7. Biomechanics of two-level Charité artificial disc placement in comparison to fusion plus single-level disc placement combination. Grauer JN, Biyani A, Faizan A, Kiapour A, Sairyo K, Ivanov A, Ebraheim NA, Patel TCh, Goel VK. Spine J; 2006 Apr; 6(6):659-66. PubMed ID: 17088196 [Abstract] [Full Text] [Related]
8. Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments. Sim HB, Murovic JA, Cho BY, Lim TJ, Park J. J Neurosurg Spine; 2010 Jun; 12(6):700-8. PubMed ID: 20515358 [Abstract] [Full Text] [Related]
13. Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion. Cheng BC, Gordon J, Cheng J, Welch WC. Spine (Phila Pa 1976); 2007 Nov 01; 32(23):2551-7. PubMed ID: 17978653 [Abstract] [Full Text] [Related]
14. Biomechanical effect of transforaminal lumbar interbody fusion and axial interbody threaded rod on range of motion and S1 screw loading in a destabilized L5-S1 spondylolisthesis model. Fleischer GD, Hart D, Ferrara LA, Freeman AL, Avidano EE. Spine (Phila Pa 1976); 2014 Jan 15; 39(2):E82-8. PubMed ID: 24150429 [Abstract] [Full Text] [Related]
16. Biomechanics of dynamic rod segments for achieving transitional stiffness with lumbosacral fusion. Lazaro BC, Reyes PM, Newcomb AG, Yaqoobi AS, Brasiliense LB, Sonntag VK, Crawford NR. Neurosurgery; 2013 Sep 15; 73(3):517-27. PubMed ID: 23756746 [Abstract] [Full Text] [Related]
17. Biomechanical analysis of sacral screw strain and range of motion in long posterior spinal fixation constructs: effects of lumbosacral fixation strategies in reducing sacral screw strains. Fleischer GD, Kim YJ, Ferrara LA, Freeman AL, Boachie-Adjei O. Spine (Phila Pa 1976); 2012 Feb 01; 37(3):E163-9. PubMed ID: 21857409 [Abstract] [Full Text] [Related]
18. Biomechanical evaluation of a new total posterior-element replacement system. Wilke HJ, Schmidt H, Werner K, Schmölz W, Drumm J. Spine (Phila Pa 1976); 2006 Nov 15; 31(24):2790-6; discussion 2797. PubMed ID: 17108830 [Abstract] [Full Text] [Related]
19. Adjacent segment motion after a simulated lumbar fusion in different sagittal alignments: a biomechanical analysis. Akamaru T, Kawahara N, Tim Yoon S, Minamide A, Su Kim K, Tomita K, Hutton WC. Spine (Phila Pa 1976); 2003 Jul 15; 28(14):1560-6. PubMed ID: 12865845 [Abstract] [Full Text] [Related]
20. Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model. Cunningham BW, Gordon JD, Dmitriev AE, Hu N, McAfee PC. Spine (Phila Pa 1976); 2003 Oct 15; 28(20):S110-7. PubMed ID: 14560182 [Abstract] [Full Text] [Related] Page: [Next] [New Search]