These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
181 related items for PubMed ID: 23323832
1. Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. McLoughlin F, Arisz SA, Dekker HL, Kramer G, de Koster CG, Haring MA, Munnik T, Testerink C. Biochem J; 2013 Mar 15; 450(3):573-81. PubMed ID: 23323832 [Abstract] [Full Text] [Related]
2. Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): a novel repressor of abiotic stress response. de Silva K, Laska B, Brown C, Sederoff HW, Khodakovskaya M. J Exp Bot; 2011 May 15; 62(8):2679-89. PubMed ID: 21252258 [Abstract] [Full Text] [Related]
3. Molecular and physiological characterization of the Arabidopsis thaliana Oxidation-related Zinc Finger 2, a plasma membrane protein involved in ABA and salt stress response through the ABI2-mediated signaling pathway. Huang P, Ju HW, Min JH, Zhang X, Chung JS, Cheong HS, Kim CS. Plant Cell Physiol; 2012 Jan 15; 53(1):193-203. PubMed ID: 22121246 [Abstract] [Full Text] [Related]
4. Phosphorylation dynamics of membrane proteins from Arabidopsis roots submitted to salt stress. Vialaret J, Di Pietro M, Hem S, Maurel C, Rossignol M, Santoni V. Proteomics; 2014 May 15; 14(9):1058-70. PubMed ID: 24616185 [Abstract] [Full Text] [Related]
5. Identification and functional characterization of the Arabidopsis Snf1-related protein kinase SnRK2.4 phosphatidic acid-binding domain. Julkowska MM, McLoughlin F, Galvan-Ampudia CS, Rankenberg JM, Kawa D, Klimecka M, Haring MA, Munnik T, Kooijman EE, Testerink C. Plant Cell Environ; 2015 Mar 15; 38(3):614-24. PubMed ID: 25074439 [Abstract] [Full Text] [Related]
6. HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Li R, Zhang J, Wu G, Wang H, Chen Y, Wei J. Plant Cell Environ; 2012 Sep 15; 35(9):1582-600. PubMed ID: 22458849 [Abstract] [Full Text] [Related]
7. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W. New Phytol; 2010 Nov 15; 188(3):762-73. PubMed ID: 20796215 [Abstract] [Full Text] [Related]
8. New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X, Chen H, Cui X, Xu L, Zhang W. Proteomics; 2009 Jun 15; 9(11):3100-14. PubMed ID: 19526560 [Abstract] [Full Text] [Related]
9. Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana. Smith CA, Melino VJ, Sweetman C, Soole KL. Physiol Plant; 2009 Dec 15; 137(4):459-72. PubMed ID: 19941623 [Abstract] [Full Text] [Related]
10. Proteomic analysis of cucumber seedling roots subjected to salt stress. Du CX, Fan HF, Guo SR, Tezuka T, Li J. Phytochemistry; 2010 Sep 15; 71(13):1450-9. PubMed ID: 20580043 [Abstract] [Full Text] [Related]
11. Comparative proteomic analysis of the Arabidopsis cbl1 mutant in response to salt stress. Shi S, Chen W, Sun W. Proteomics; 2011 Dec 15; 11(24):4712-25. PubMed ID: 22002954 [Abstract] [Full Text] [Related]
12. The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, Li C. Plant Cell Physiol; 2007 Aug 15; 48(8):1148-58. PubMed ID: 17609218 [Abstract] [Full Text] [Related]
13. A Critical Role of Lyst-Interacting Protein5, a Positive Regulator of Multivesicular Body Biogenesis, in Plant Responses to Heat and Salt Stresses. Wang F, Yang Y, Wang Z, Zhou J, Fan B, Chen Z. Plant Physiol; 2015 Sep 15; 169(1):497-511. PubMed ID: 26229051 [Abstract] [Full Text] [Related]
14. Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Zhang Q, Lin F, Mao T, Nie J, Yan M, Yuan M, Zhang W. Plant Cell; 2012 Nov 15; 24(11):4555-76. PubMed ID: 23150630 [Abstract] [Full Text] [Related]
15. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na/H antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Liu H, Wang Q, Yu M, Zhang Y, Wu Y, Zhang H. Plant Cell Environ; 2008 Sep 15; 31(9):1325-34. PubMed ID: 18518917 [Abstract] [Full Text] [Related]
16. Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties. Putta P, Rankenberg J, Korver RA, van Wijk R, Munnik T, Testerink C, Kooijman EE. Biochim Biophys Acta; 2016 Nov 15; 1858(11):2709-2716. PubMed ID: 27480805 [Abstract] [Full Text] [Related]
17. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud JP, Aldon D. Plant J; 2008 Nov 15; 56(4):575-89. PubMed ID: 18643966 [Abstract] [Full Text] [Related]
18. The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H. Gene; 2010 Jun 01; 457(1-2):1-12. PubMed ID: 20193749 [Abstract] [Full Text] [Related]
19. Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation. Popova OV, Yang O, Dietz KJ, Golldack D. Gene; 2008 Nov 01; 423(2):142-8. PubMed ID: 18703123 [Abstract] [Full Text] [Related]
20. Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. Testerink C, Larsen PB, van der Does D, van Himbergen JA, Munnik T. J Exp Bot; 2007 Nov 01; 58(14):3905-14. PubMed ID: 18000017 [Abstract] [Full Text] [Related] Page: [Next] [New Search]